
Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 1 of 150

 1

2

3

4
5
6

7
8
9

10
11
12
13
14
15
16
17
18

Conformance Requirements Document
Version 1.0.4
for Application Level Events (ALE) 1.1.1
This version was approved by the SAG Filtering and Collection WG and
TSC on January 10, 2010

Disclaimer
EPCglobal Inc™ is providing this document as a service to interested industries.
This document was developed through a consensus process of interested
parties. Although efforts have been to assure that the document is correct,
reliable, and technically accurate, EPCglobal Inc makes NO WARRANTY,
EXPRESS OR IMPLIED, THAT THIS DOCUMENT IS CORRECT, WILL NOT
REQUIRE MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL
ADVANCES DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR
WORKABLE IN ANY APPLICATION, OR OTHERWISE. Use of this document is
with the understanding that EPCglobal Inc has no liability for any claim to the
contrary, or for any damage or loss of any kind or nature.

Copyright notice 19

© 2008-2010 EPCglobal Inc. 20

 All rights reserved. Unauthorized reproduction, modification, and/or use of this document is not 21
permitted. Requests for permission to reproduce should be addressed to 22
epcglobal@epcglobalinc.org. 23
 24
EPCglobal Inc.TM is providing this document as a service to interested industries. This 25
document was developed through a consensus process of interested parties. Although efforts 26
have been to assure that the document is correct, reliable, and technically accurate, EPCglobal 27
Inc. makes NO WARRANTY, EXPRESS OR IMPLIED, THAT THIS DOCUMENT IS 28
CORRECT, WILL NOT REQUIRE MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL 29
ADVANCES DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN 30
ANY APPLICATION, OR OTHERWISE. Use of this Document is with the understanding that 31
EPCglobal Inc. has no liability for any claim to the contrary, or for any damage or loss of any 32
kind or nature 33

34

mailto:epcglobal@epcglobalinc.org

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 2 of 150

Abstract 35

36
37
38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

This document outlines the approach to conformance testing for the EPCglobal
Application Level Events (ALE) 1.1 specification. The objective of an ALE
conformance certification program is to test and certify solution providers’
implementations of the EPCglobal ALE interface v1.1. Certification of ALE
conformance provides confidence for buyers in the operational capability of a specific
product’s implementation of the ALE interfaces, while providing solution providers a
benchmark to assure product functionality.

Status of this document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the EPCglobal. This document has been reviewed and approved per the
steps outlined in the Standards Development Process for errata. It is to be used in
conjunction with the ratified ALE 1.1 specification as published on the EPCglobal
website.
This latest version of 1.0.4 is based on correcting errata discovered duing beta testing
and certification efforts at MET Labs and approved by the Filtering and Collection
Working Group on December 17, 2009 and subsequently by the TSC on January 10,
2010.

For a complete list of all the latest comments received that were reviewed and evaluated
to update this version of the ALE 1.1 Conformance Requirements, consult the following
file available only to EPCglobal Subscribers: ALE_1_1-Conformance-Req-
Issues_20081218.pdf which will be made available from the ALE standards page from
the following URL: http://www.epcglobalinc.org/standards/ale. 59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Some of changes made to the previous version or version 1.0 of the Conformance
Requirements for ALE 1.1 are as follows:

• TCR-R7 Step 3: Correction initiationCondition changed to initiationTrigger
• TCR-R9 Step 20: Correction “expiry of N sections” changed to “immediately”
• TCR-R9 Step 21: Clarification note added
• TCR-R17 Pre-test Conditions: ECFieldSpec7 removed since is was not used
• TCR-R18 Step 5: Correction Changed ECReportOutputFieldSpecC to

ECReportOutputFieldSpecD
• TCR-W3: Deleted Step 31 since it repeated a previous step. Renumbered steps

starting at 30. Previously there was no step 30.
• TCR-W4 Pre-test Conditions: filterList value changed to “no” in CCSpec
• TCR-W5 Pre-test Conditions: filterList value changed to “no” in all CCSpecs
• TCR-W6 Pre-test Conditions: filterList value changed to “no” in CCSpec
• TCR-W7 Pre-test Conditions: filterList value changed to “no” in CCSpec
• TCR-W8 Pre-test Conditions: filterList value changed to “no” in CCSpec and
• TCR-W8 Step 2: deleted “and RawHex” from expected results.

http://www.epcglobalinc.org/standards/ale

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 3 of 150

• TCR-W9 Pre-test Conditions: filterList value changed to “no” in CCSpec 77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

• TCR-W10 Pre-test Conditions: filterList value changed to “no” in CCSpecs
• TCR-W11 Pre-test Conditions: First bullet corrected and filterList value changed

to “no” in CCSpec
• TCR-W12 Pre-test Conditions: First bullet corrected and filterList value changed

to “no” in CCSpec
• TCR-W13 Pre-test Conditions: filterList value changed to “no” in CCSpec
• TCR-W14 Pre-test Conditions: filterList value changed to “no” in CCSpec
• TCR-W14 Pre-test Conditions: CCOpSpec List B FieldSpec changed from

@1.96 to @1.96.32
• TCR-T3 Step 3: clarification note added
• TCR-T4: Inserted new step after step 2 to correct oversight of not defining the

ECSpec. Subsequent steps were renumbered.
• TCR-T5: Inserted new step after step 2 to correct oversight of not defining the

ECSpec. Subsequent steps were renumbered.
• TCR-A3 Pre-test Conditions: Updated ACPermission5
• TCR-A3 Step 32: Added clarification note
• TCR-A3 Step 34: Correction:Changed expected result to ACPermission3
• TCR-A3 Step 40: Correction:Changed expected result to ACPermission4
• TCR-A3 Step 44: Correction: Changed ECSpec to LRSpec
• TCR-A3 Step 46: ACPermission1 to ACPPermission5
• TCR-A3 Step 50: Correction: Changed ECSpec to LRSpec
• TCR-A3 Step 52: ACPermission1 to ACPPermission6
• TCR-A3 Step 53: ACClientIdentity3 to ACClientIdentity2
• TCR-A3 Step 54: No exceptions should be raised.
• TCR-A3 Step 54: Rewrote step to add clarity
• TCR-A4 Step 7: Added clarification note
• TCR-A4 Step 19: changed “unknown” to “invalid”
• TCR-A4 Step 20: Added clarification note
• TCR-A4 Step 28: Added clarification note
• TCR-L2 Step 2: clarified expected results
• TCR-L2 Step 4: changed isComposite to true since API defined readers are not

being tested.
• TCR-L2 Step 5: clarified expected results
• TCR-L2 Step 11: clarified expected results
• TCR-L4 Step 6: clarified expected results
• TCR-L5 Pre-test Conditions: clarified bullet
• TCR-L5 Step 2: changed isComposite to true since API defined readers are not

being tested.
• TCR-L5 Step 5: Changed LRSpec name to LR1
• TCR-L5 Step 19: Clarified that a valid logical reader name should be used
• TCR-L5 Steps 20, 21, 23, 24 and 31: Clarified the how the expected results are

different when an API-defined readers are supported.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 4 of 150

 121
122
123
124
125
126
127

128

129

130

131

132

133
134

135
136

137
138

139
140

141
142

143
144

145
146

147
148
149
150
151

152
153
154
155
156
157
158
159
160

CONTENTS
1 Introduction .. 7

2 Scope .. 7

3 Program Overview ... 8

4 Terminology... 9

5 Submission Requirements.. 10

6 ALE 1.1 General Functional Requirements ... 10

6.1 General API Mandatory Requirements Matrix .. 10
7 ALE 1.1 Reading API Functional Requirements... 25

7.1 Reading API Mandatory Requirements Matrix ... 25
8 ALE 1.1 Writing API Functional Requirements ... 36

8.1 Writing API Mandatory Requirements Matrix .. 37
9 ALE 1.1 Tag Memory API Functional Requirements 50

9.1 Tag Memory API Mandatory Requirements Matrix ... 51
10 ALE 1.1 Access Control API Functional Requirements 53

10.1 Access Control API Mandatory Requirements Matrix 53
11 ALE 1.1 Logical Reader API Functional Requirements 56

11.1 Logical Reader API Mandatory Requirements Matrix 57
12 Part II: XML and SOAP Binding Requirements ... 59

12.1 XML and SOAP Binding Mandatory Requirements Matrix 60
13 Notes on Test Case Requirements ... 63

13.1 Nomenclature ... 63
13.2 General Requirments ... 63
13.3 Pre-Condidtions and Post-Conditions .. 63
13.4 XML Instance Document Validation ... 63

14 Reading API Test Case Requirements ... 64

14.1 TCR-R1 – Get Version, Reading API ... 64
14.2 TCR-R2 – Defining, Un-defining and Retrieving ECSpecs, Reading API 64
14.3 TCR-R3 – Exceptions, Reading API ... 65
14.4 TCR-R4 – Subscribe and Unsubscribe, Reading API 68
14.5 TCR-R5 – Poll, Reading API .. 69
14.6 TCR-R6 – Immediate and ECStatProfileName, Reading API 71
14.7 TCR-R7 – Using startTrigger, startTriggersList, stopTrigger and

stopTriggersList, Reading API .. 72
14.8 TCR-R8 – Exclude Filtering, Reading API ... 73

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 5 of 150

14.9 TCR-R9 – Using whenDataAvailable, Reading API... 75 161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200

201
202
203
204
205

14.10 TCR-R10 – Using primaryKeyFields, Reading API ... 78
14.11 TCR-R11 – Interpretation of new in stableSetInterval, Reading API 80
14.12 TCR-R12 – Stability of EPC set, Reading API ... 81
14.13 TCR-R13 – includeSpecInReports, Reading API .. 82
14.14 TCR-R14 – stableSetInterval and duration, Reading API 83
14.16 TCR-R16 – Include Filter, Groups and Multiple Readers, Reading API 86
14.17 TCR-R17 – Include Filtering, Reading API .. 89
14.18 TCR-R18 – Reporting Variable Fields, Reading API 92
14.19 TCR-R19 – Initiation and Termination Conditions for Undefining an ECSpec

during Active Poll, Reading API ... 94
14.20 TCR-R20 – Realtime Clock Trigger .. 95
14.21 TCR-R21 – XML Vendor Extension Validaion .. 95

15 Writing API.. 97

15.1 TCR-W1 – Get Version, Writing API ... 97
15.2 TCR-W2 – Defining, Un-defining, Retrieving CCSpecs, Writing API 97
15.3 TCR-W3 – Exceptions, Writing API ... 98
15.4 TCR-W4 – Subscribe and Unsubscribe for READ Operation, Writing API ... 101
15.5 TCR-W5 – Subscribe and Unsubscribe for WRITE and LOCK operations,

Writing API.. 102
15.6 TCR-W6 – Poll, Writing API .. 106
15.7 TCR-W7 – Poll, Writing API .. 107
15.8 TCR-W8 – Immediate, Writing API.. 109
15.9 TCR-W9 – Using startTriggerList and stopTriggerList, Writing API 109
15.10 TCR-W10 – Subscribe and Unsubscribe for KILL operation, Wrting API 111
15.11 TCR-W11 – Using EPCCache, Writing API ... 112
15.12 TCR-W12 – Using Association Table, Writing API 113
15.13 TCR-W13 – Using RNG, Writing API .. 115
15.14 TCR-W14 – Memory Banks, Writing API .. 116
15.15 TCR-W15 – Initiation and Termination Conditions for Undefining a CCSpec

during Active Poll, Writing API .. 121
15.16 – XML Vendor Extension Validaion ... 122

16 Tag Memory Specification API ... 124

16.1 TCR-T1 – Get Version, Tag Memory API .. 124
16.2 TCR-T2 – Defining, Un-defining, Retrieving TMSpecs, Tag Memory API .. 124
16.3 TCR-T3 – Exceptions, Tag Memory API .. 125
16.4 TCR-T4 – Using Fixed Fieldnames defined with Tag Memory API 126
16.5 TCR-T5 – Using Variable Fieldnames defined with Tag Memory API.......... 128
16.6 TCR-T6 – XML Vendor Extension Validaion .. 130

17 Access Control API ... 131

17.1 TCR-A1 – Get Version, Access Control API .. 131
17.2 TCR-A2 – Supported Operations .. 131
17.3 TCR-A3 – Using ClientIdentity, Roles and Permissions, Access Control API

 132
17.4 TCR-A4 – Exceptions, Access Control API .. 137

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 6 of 150

17.5 TCR-A5 – XML Vendor Extension Validaion .. 139 206
207

208
209
210
211
212
213
214
215
216
217

218
219

220
221

18 ALE Logical Reader API ... 140

18.1 TCR-L1 – Get Version, Logical Reader API .. 140
18.2 TCR-L2 – Defining, Un-defining, Updating, Retrieving LRSpecs, Logical

Reader API ... 140
18.3 TCR-L3 – Adding, Setting, Removing Readers, Logical Reader API 141
18.4 TCR-L4 – Tag Smoothing - Setting and Retrieving Relevant Properties of a

Reader, Logical Reader API .. 142
18.5 TCR-L5 – Exceptions, Logical Reader API .. 143
18.6 TCR-L6 – Using Composite, Logical Reader API .. 145
18.7 TCR-L7 – XML Vendor Extension Validaion .. 146

19 References .. 147

20 Acknowledgement of Contributors and of Companies Opt’d-in during the
Creation of this Standard (non-normative) ... 147

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 7 of 150

1 Introduction 222
Technical implementations of the Application Level Events (ALE) specification may
vary due to distinct interpretations of the specification and/or use of proprietary
technologies when developing systems that implement the EPCglobal Architecture
Framework. Conformance testing provides a mechanism to ensure that solutions adhere
to, and are compatible with, the specified standard. An Application Level Events (ALE)
Conformance Certification Program provides solution providers a benchmark to assure
product functionality according to the ALE specification, while imparting confidence on
potential buyers in the operational capability of a specific product’s implementation of
the ALE interface.

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

262
263

ALE certification represents an endorsement that helps solution provider differentiate
their products and services within the marketplace. Certification of ALE conformance
instills both product recognition and a level of public confidence sought by corporate
supply chains looking to partner with a solution provider of EPCglobal standard
compliant products. Implementation of an ALE certification program will:

• Help move the industry toward RFID Interoperability 239

• Accelerate ALE and EPC Implementations 240

• Publicly identify product vendors who support the EPCglobal standards. 241

The focus of this program will be both software and hardware product conformance to
the EPCglobal ALE 1.1 Interface Specification. The Application Level Events (ALE)
specification describes an interface through which client applications may obtain filtered,
consolidated EPC data from a variety of sources or perform operations on data carriers
(e.g. RFID Tags) such as writing data, reading data or killing tags.

The design of the interface recognizes that in most EPC processing systems, there is a
level of processing that reduces the volume of data that comes directly from the EPC data
source, such as an RFID reader, into “coarser” events of interest to applications. An ALE
interface provides summations of EPC data that higher level business applications can
consume and interpret. Also, the interface provides a level of abstraction to ease the
burden on EPC processing systems when performing operations on data cariers. In
particular, the ALE 1.1 specification is designed to provide full access to the functionality
of the EPCglobal UHF Class 1 Gen 2 [Gen2] specification, when interacting with Gen2
RFID Tags.

The EPCglobal Filtering and Collection working group is responsible for defining the
ALE Certification test scenarios that the authorized testing agency will use in developing
a test harness and associated test scripts.

2 Scope 261
An ALE Conformance Certification Program will focus on testing a given application’s
implementation of the ALE Interface and its conformance to the ALE 1.1 Specification.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 8 of 150

Test case requirements and benchmark definitions will be developed by the EPCglobal
Filtering and Collection working group.

264
265
266
267
268

270
271
272
273
274
275
276
277
278

280

282

284

289

291

293

295

300

An ALE Conformance Certification Program is NOT intended to test the performance,
reliability, or scalability of the tested product.

3 Program Overview 269
The ALE Certification Program will be offered by a certified testing laboratory to
solution providers enrolled in the certification program.

Program Implementation and Certificate definition are to be defined by EPCglobal US
and a chosen Testing Laboratory.

An EPCglobal ALE Conformance Certification Program will focus on testing the
following aspects of the ALE interface:

• Support all EPCglobal tag encoding as defined in the EPCglobal Tag Data Standard, 279

version 1.3.1

• Support of the ALE event cycle model as it pertains to reader cycles and the inclusion 281
of tags in EC Reports.

• Support of the ALE command cycle model as it pertains to reader cycles and the 283
inclusion of tags in CC Reports.

• Support of all methods defined in the ALE APIs. 285

• Support all exceptions conditions defined in the ALE APIs. 286

• Support of the XML and SOAP bindings for the ALE APIs. 287

• Support of the HTTP, HTTPS, FILE and TCP notification mechanisms for ALE 288
Subscriptions; when provided by an ALE implementation.

• Support for each parameter of the ECSpec and those permutations identified as 290
important to validate conformance.

• Support for each parameter of the CCSpec and those permutations identified as 292
important to validate conformance.

• Support for each parameter of the TMSpec and those permutations identified as 294
important to validate conformance.

• Support for Fieldnames, Datatypes, and Formats 296

• Validation of ECReports for conformance with format specification. 297

• Validation of CCReports for conformance with format specification. 298

• Correct implementation of the extensibility mechanisms defined for the XML and 299
SOAP bindings of the ALE APIs.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 9 of 150

The conformance tests may not be exhaustive, but should be representative of capabilities
needed for a successful ALE implementation. The tests should be defined to be platform
independent, and should not require products to be implemented on any particular system
or platform.

301
302
303
304
305
306
307
308
309

The EPCglobal Filtering and Collection group has envisioned 3 classes of product that
may implement the ALE specification and should be included in the conformance test
design: Software, Hardware, and Other Products.

Product Class Product Description

Software A software product (e.g. RFID Middleware) that processes tag reads
and commands from an arbitrary number of external reader devices

Hardware A Hardware Product (e.g. Smart RFID reader) that embeds an ALE
implementation.

Other Specialized implementations of ALE that are not capable of reading
arbitrary RFID Tags (e.g. a barcode scanner that implements ALE)

4 Terminology 310
This document adopts terminology developed by the World Wide Web Consortium
[W3C-Conformance]:

311
312

314

316

319

321

323
324

326
327

328

329

330

331

• Certificate Issuer The organization that issues certificates of conformance, namely, 313
EPCglobal.

• Testing Laboratory An organization that carries out certification testing on behalf of 315
the Certificate Issuer

• Specification An EPCglobal specification for which conformance is tested. 317

• Implementation Under Test (IUT) A submission of hardware and/or software for 318
which certification is sought by an EPCglobal subscriber.

• System Under Test (SUT) The IUT together with any other apparatus required to 320
carry out the test.

• Test Method A description of the test that is applied to the SUT. There may be 322
more than one Test Method available for a given ALE 1.1 specification requirement,
each providing a different level of conformance testing.

• Test Report Quoting from [W3C-Conformance]: “A Test Report contains the 325
results of the testing effort. The test report should provide enough information that, if
necessary, the testing effort could be duplicated. The testing report should contain:

• a complete description of the IUT,

• the name of the Testing Laboratory,

• the signature of a Testing Laboratory official,

• the date that the testing was completed,

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 10 of 150

• the name and version number of the Test Method 332

333

334

336

338
339
340

342
343
344

346
347
348
349

350
351
352
353
354
355

356
357

359
360
361
362
363

365
366
367
368
369
370

• the results of the Test Method

• an unambiguous statement indicating pass or fail.”

• ALE Conformance Certification Program An EPCglobal US sponsored 335
Software/Hardware solution certification program measuring ALE 1.1 conformance.

• Certificate of Conformance Quoting again from [W3C-Conformance]: “The 337
certificate of conformance is typically a summation of the Test Report. Since it is
often used in the procurement process, it includes information most pertinent between
the buyer and the seller.”

5 Submission Requirements 341
Solution providers who wish to submit their product(s) for testing must submit the
following to the testing laboratory:

• An Implementation Under Test (IUT). This may take one of the following forms: 345

• Software that implements both the server ALE interface 1.1 and the Reader
& Trigger Simulator interfaces. The software tests may be applied over the
internet to the implementation under test, so that physical installation is not
necessary to complete the test cases.

• Software that implements both the ALE interface and the Reader Simulator &
Trigger Simulator interfaces. Where software is compatible with platforms
supported by the testing laboratory, the submission may be in the form of a CD-
ROM plus written installation instructions. Otherwise, the software must be
submitted pre-installed on compatible hardware, with written instructions for
starting and shutting down the hardware.

• Any other kind of system that implements the ALE interface, including (but not
limited to) ALE implementations embedded in RFID readers or other devices.

6 ALE 1.1 General Functional Requirements 358
The ALE 1.1 defines specific functionality that a valid ALE implementation must
provide regardless of which APIs are implemented The following tables outline the
specific requirements that must be tested as defined by the ALE 1.1 specification. Each
test requirement entry references the ALE 1.1 Specification and the test case requirement
(TCR) used to verify functionality as defined in Sections 14 through 18 of this document.

6.1 General API Mandatory Requirements Matrix 364
The following table outlines the mandatory general requirements for an ALE
implementation as defined by the ALE 1.1 Specification. All mandatory general
requirements have a requirement number of GMx where x is a decimal number. The
Protocol Sub-Clause is from Part 1 of the ALE 1.1 specification unless otherwise noted.
Any requirement whose requirement number has an asterisk (*) following it is optional
and only tested if an implementation has implemented the feature. Only Gen2 tags will

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 11 of 150

be used for conformance testing. Requirements for Gen1 tags will have “N/A” in the
“How Verified” column.

371
372
373

Req.
No.

Protocol
Sub-
Clause

Requirements
(Requirements, Command, …)

Applies
to
(ref)

How Verified
(by Demonstration
or by Design)

GM1 4

To comply with this specification, an
implementation of a given ALE API SHALL
fully implement that API according to this
specification.

 By
Demonstration:
TCR: All test
cases for each
API
implemented.

GM2 4.3

An ALE implementation SHALL implement
these methods as specified in the Table 2:
getStandardVersion, getVendorVersion. The
result returned by each method SHALL only
pertain to the API to which it belongs.

 By
Demonstration:
TCR – R1, W1,
T1, L1, A1

GM3 4.3

A getStandardVersion implementation
SHALL return a string corresponding to a
version of this specification to which the API
implementation fully complies. Version 1.1
of the ALE specification, the implementation
SHALL return the string 1.1

 By
Demonstration:
TCR – R1, W1,
T1, L1, A1

GM4 4.3

A getVendorVersion returning an empty
string SHALL indicate that the
implementation implements only standard
functionality of the API with no vendor
extensions. The result returned by this
method SHALL only pertain to the API to
which it belongs.

 By
Demonstration:
TCR - R1, W1,
T1, L1, A1

GM5 4.3

When an implementation chooses to return a
non-empty string for getVendorVersion, the
value returned SHALL be a URI where the
vendor is the owning authority. The result
returned by this method SHALL only pertain
to the API to which it belongs.

 By
Demonstration:
TCR - R1, W1,
T1, L1, A1 to
confirm a valid
URI.
By Design to
confirm owning
Authority:
TCR-R21,
W16, T6, A5,
L7

GM6 4.5

Except as noted elsewhere in this
specification, an ALE implementation
SHALL accept as a name any non-empty
string of Unicode characters that does not
include Pattern_White_Space or

 By
Demonstration
TCR – R2, R3,
W2, W3

Pattern_Syntax characters (as those classes
are defined in [Unicode])

GM7 4.5

An ALE implementation SHALL consider the
specified name equivalent to the previously
specified name if it is an identical sequence of
Unicode characters.

 By
Demonstration
TCR – R2. W2

GM8 4.5

An ALE implementation SHALL NOT
consider the specified name equivalent to the
previously specified name if they are not
canonical equivalent sequences (except in
situations of aliasing explicitly noted
elsewhere in this specification).

 By
Demonstration
TCR – R3, W3

GM9 4.6
An ALE implementation SHALL permit the
same string to be used as a name in more than
one namespace. (see table in section 4.6)

 By
Demonstration:
TCR – R5, W4

GM10 4.7

Within this specification, the terms “null,”
“omitted,” and “empty string” are used
interchangeably to denote an absent value.
An implementation SHALL NOT draw any
distinction between “null,” “omitted,” and
“empty string.” If a binding provides more
than one representation as illustrated above,
the ALE implementation SHALL treat them
as equivalent.

 By
Demonstration
TCR – Various
Reading and
Writing API
test cases. The
test device
should use
variations of
null, omitted
and empty
string
throughout the
test cases.

GM11 4.7

An implementation SHALL NOT draw any
distinction between an omitted list and a list
containing zero elements. If a binding
provides more than one representation for this
situation, the ALE implementation SHALL
treat them as equivalent.

 By
Demonstration
TCR - Various
Reading and
Writing API
test cases. The
test device
should use
variations of
null, omitted
and empty
string
throughout the
test cases.

GM12 5.6.1
An EC/CCSpec that is created by a call to the
define method of the ALE Reading/Writing
API SHALL begin in the unrequested state,

 By
Demonstration
TCR – R2, W2

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 12 of 150

with an empty set of subscribers.

GM13 5.6.1

An EC/CCSpec that is created by a call to the
define method SHALL be subject to the
state transitions specified in the three tables 6,
7 and 8

 By
Demonstration
TCR – R4, R5,
W4, W5, W6

GM14 5.6.1 The transitions in table 6 SHALL apply when
the EC/CCSpec is in the unrequested state.

 By
Demonstration
TCR - R4, R5,
W4, W5, W6

GM15 5.6.1 The transitions in table 7 SHALL apply when
the EC/CCSpec is in the requested state.

 By
Demonstration
TCR - R4, R5,
W4, W5, W6

GM16 5.6.1 The transitions in Table 8 SHALL apply
when the EC/CCSpec is in the active state.

 By
Demonstration
TCR - R4, R5,
W4, W5, W6

GM17 5.6.1

A call to undefined from the active state
reports SHALL have
terminationCondition set to
UNDEFINE. For an ECSpec, the reports
SHALL include any Tags that were read prior
to the undefine call. For a CCSpec, the
reports SHALL include any operations that
were completed prior to the undefine call.

 By
Demonstration
TCR – R19,
W15

GM18 5.6.1
Events occuring at times other than those
specified in the tables 6, 7 and 8 SHALL
NOT cause a state transition

 By
Demonstration
TCR - R4, R5,
W4, W5, W6

GM19 5.6.1

If an ALE Writing API implementation
receives a second poll call for a CCSpec for
which there is already an outstanding poll
call, and the second poll call specifies
different parameter values, the ALE
implementation SHALL satisfy the second
poll by a initiating a new command cycle
rather than sharing the results of the first, as
though the second poll were of a different
CCSpec.

 By
Demonstration
TCR – W7

GM20 5.6.1

Simultaneous poll calls for the same
CCSpec that specify no parameters SHALL
share the same command cycle, as implied by
the state diagrams in this section.

 By
Demonstration
TCR – W7

GM21 5.6.2 An EC/CCSpec that is created by a call to the
immediate method of the ALE

 By
Demonstration

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 13 of 150

Reading/Writing API SHALL begin in the
requested state if any start triggers are
specified, and in the active state if no start
triggers are specified

TCR – R6, W8.

GM22 5.6.2

An EC/CCSpec that is created by a call to the
immediate method SHALL be subject to
the state transitions specified in the Tables 9
and 10.

 By
Demonstration
TCR – R6, W8

GM23 5.6.2
The transitions a given in Table 9 SHALL
apply when the EC/CCSpec is in the
requested state.

 By
Demonstration
TCR – R6, W8

GM24 5.6.2
The transitions given in Table 10 SHALL
apply when the EC/CCSpec is in the active
state.

 By
Demonstration
TCR – R6, W8

GM25 5.6.2
Events occuring at times other than those
specified in the Tables 9 and 10 SHALL NOT
cause a state transition.

 By
Demonstration
TCR – R6,W8

GM26 6.1
An ALE implementation SHALL recognize
each fieldname defined in this section and
interpret it as defined herein (see Section 6.1).

 By
Demonstration
TCR – R8, R17,
W14

GM27* 6.1
An ALE implementation that implements the
TMSpec API SHALL recognize fieldnames
defined through that API (see Section 7).

 By
Demonstration
TCR – R17,
W14

GM28 6.1.1
An ALE implementation SHALL recognize
the string epc as a valid fieldname as
specified in this section

 By
Demonstration
TCR – R8, R17,
W5

GM29 6.1.1

When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the epc
fieldname as referring to the EPC/UII content
of the EPC memory bank (Bank 012) as
defined in [Gen2].

 By
Demonstration
TCR – R8, R17,
W14

GM30* 6.1.1

When interacting with a Gen1 Tag, an ALE
implementation SHALL interpret the epc
fieldname as referring to the EPC content of
the Tag; that is, the EPC payload (the number
of bits being fixed by the tag) not including
CRC or other non-EPC bits. The treatment
SHALL be equivalent to a Gen2 tag whose
toggle bit (bit 17h) and Reserved/AFI bits
(bits 18h-1Fh) are zeros.

 N/A

GM31 6.1.1
When interacting with a Gen1 or Gen2 Tag,
an ALE implementation SHALL raise an
“operation not possible” condition if an

 By
Demonstration
TCR – W5

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 14 of 150

attempt is made to carry out a “lock”
operation on the epc field.

GM32 6.1.1

If a fieldspec specifies a fieldname of epc
and specifies any other datatype besides epc,
the ALE implementation SHALL consider the
fieldspec to be invalid.

 By
Demonstration
TCR—R3, W3

GM33 6.1.2
An ALE implementation SHALL recognize
the string killPwd as a valid fieldname as
specified in this section.

 By
Demonstraion
TCR – R8, R17.
W14

GM34 6.1.2

When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the
killPwd fieldname as a synonym for the
fieldname @0.32, that is, for offset 00h to 1Fh
in the RESERVED memory bank of a Gen2
Tag, which holds the Kill Password.

 By
Demonstration
TCR – R8, R17,
W14

GM35 6.1.2

The default datatype for the killPwd field
SHALL be uint; the default format SHALL
be hex. The implementation SHALL NOT
permit any other datatypes defined in this
specification to be used for the killPwd
field.

 By
Demonstration
TCR- R8, R17,
W14

GM36 6.1.3
An ALE implementation SHALL recognize
the string accessPwd as a valid fieldname
as specified in this section.

 By
Demonstation
TCR – R8, R17.
W14

GM37 6.1.3

When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the
accessPwd fieldname as a synonym for the
fieldname @0.32.32, that is, for offset 20h
to 3Fh in the RESERVED memory bank of a
Gen2 Tag, which holds the Access Password.

 By
Demonstration
TCR – R8, R17,
W14

GM38 6.1.3

The default datatype for the accessPwd
field SHALL be uint; the default format
SHALL be hex. The implementation
SHALL NOT permit any other datatypes
defined in this specification to be used for the
accessPwd field.

 By
Demonstration
TCR – R8, R17,
W14, R3, W3

GM39 6.1.4
An ALE implementation SHALL recognize
the string epcBank as a valid fieldname as
specified in this section

 By
Demonstraton
TCR – R8, R17,
W14

GM40 6.1.4
When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the
epcBank fieldname as referring to the

 By
Demonstration
TCR – R8, R17,

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 15 of 150

content of the EPC memory bank (Bank 012)
as defined in [Gen2].

W14

GM41 6.1.4

If the implementation cannot or does not wish
to support reading to the end of the memory
bank, an ALE implementation SHALL raise
an “operation not possible” condition when an
attempt is made to read from the epcBank
field.

 By
Demonstration
TCR – R8

GM42 6.1.4

The default datatype for the epcBank field
SHALL be bits ; the default format SHALL
be hex. The implementation SHALL NOT
permit any other datatypes defined in this
specification to be used for the epcBank
field.

 By
Demonstration
TCR – R8, R17,
W14, R3, W3

GM43 6.1.5
An ALE implementation SHALL recognize
the string tidBank as a valid fieldname as
specified in this section.

 By
Demonstration
TCR – R8, R17,
W14

GM44 6.1.5

When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the
tidBank fieldname as referring to the
content of the TID memory bank (Bank 102)
as defined in [Gen2].

 By
Demonstration
TCR – R8, R17,
W14

GM45 6.1.5

If the implementation cannot or does not wish
to support reading to the end of the memory
bank, an ALE implementation SHALL raise
an “operation not possible” condition when an
attempt is made to read from the tidBank
field.

 By
Demonstration
TCR – R8

GM46 6.1.5

The default datatype for the tidBank field
SHALL be bits; the default format SHALL
be hex. The implementation SHALL NOT
permit any other datatypes defined in this
specification to be used for the tidBank
field.

 By
Demonstration
TCR – R8, R17,
W14, R3, W3

GM47 6.1.6
An ALE implementation SHALL recognize
the string userBank as a valid fieldname as
specified in this section.

 By
Demonstration
TCR – R8, R17,
W14

GM48 6.1.6

When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the
tidBank fieldname as referring to the
content of the TID memory bank (Bank 102)
as defined in [Gen2].

 By
Demonstration
TCR – R8, R17,
W14

GM49 6.1.6 If the implementation cannot or does not wish By

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 16 of 150

to support reading to the end of the memory
bank, an ALE implementation SHALL raise
an “operation not possible” condition when an
attempt is made to read from the userBank
field.

Demonstration
TCR – R8

GM50 6.1.6

The default datatype for the userBank field
SHALL be bits; the default format SHALL
be hex. The implementation SHALL NOT
permit any other datatypes defined in this
specification to be used for the userBank
field.

 By
Demonstration
TCR – R8, R17,
W14, R3, W3

GM51 6.1.7
An ALE implementation SHALL recognize
the string afi as a valid fieldname as
specified in this section.

 By
Demonstration
TCR – R8, W14

GM52 6.1.7

When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the afi
fieldname as a synonym for the fieldname
@1.8.24, that is, for offset 18h to 1Fh in the
EPC/UII memory bank of a Gen2 Tag, which
may hold the ISO 15962 Application Family
Identifier (AFI).

 By
Demonstration
TCR – R8, W14

GM53* 6.1.7
When interacting with a Gen1 Tag, an ALE
implementation SHALL interpret the afi
fieldname as a “field not found”.

 N/A

GM54 6.1.7

When interacting with a Gen2 Tag, an ALE
implementation SHALL raise an “operation
not possible” condition if an attempt is made
to carry out a “lock” operation on the afi
field.

 By
Demonstration
TCR – R8, W14

GM55 6.1.7

The default datatype for the afi field
SHALL be uint; the default format SHALL
be hex. The implementation SHALL NOT
permit any other datatypes defined in this
specification to be used for the afi field.

 By
Demonstration
TCR – R8,
W14, R3, W3

GM56 6.1.8
An ALE implementation SHALL recognize
the string nsi as a valid fieldname as
specified in this section

 By
Demonstration
TCR – R8, W14

GM57 6.1.8

When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret the nsi
fieldname as a synonym for the fieldname
@1.9.23, that is, for offset 17h to 1Fh in the
EPC/UII memory bank of a Gen2 Tag, which
holds the Numbering System Identifier (NSI).

 By
Demonstration
TCR – R8, W14

GM58* 6.1.8 When interacting with a Gen1 Tag, an ALE
implementation SHALL interpret the nsi

 N/A

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 17 of 150

fieldname as a “field not found”.

GM59 6.1.8

When interacting with a Gen2 Tag, an ALE
implementation SHALL raise an “operation
not possible” condition if an attempt is made
to carry out a “lock” operation on the nsi
field.

 By
Demonstration
TCR – R8, W14

GM60 6.1.8

The default datatype for the nsi field
SHALL be uint; the default format SHALL
be hex. The implementation SHALL NOT
permit any other datatypes defined in this
specification to be used for the nsi field.

 By
Demonstration
TCR – R8,
W14, R3, W3

GM61 6.1.9

An ALE implementation SHALL recognize
any string beginning with an @ character as a
valid fieldname as specified by the syntax in
the following sub-sections, provided that the
string also meets the constraints: The bank
portion must be 0 or a positive integer with
no leading zeros. The length portion must
be a positive integer with no leading zeros.
The offset portion (if specified) must be 0
or a positive integer with no leading zeros.

 By
Demonstration
TCR – R17,
W14

GM62 6.1.9

An ALE implementation SHALL consider
any string beginning with an @ character but
not conforming to any syntax specified
herein, or not meeting the constraints stated in
GM61 as an invalid fieldname.

 By
Demonstration
TCR – R3

GM63 6.1.9.1

An ALE implementation SHALL recognize
any string of the form
@bank.length[.offset] as a valid
fieldname as specified in this section,
provided that the string also meets the
constraints as stated in GM61.

 By
Demonstration
TCR – R17,
W14

GM64 6.1.9.1

An ALE implementation SHALL consider
any string beginning with an @ character but
not conforming to this syntax, or not meeting
the as stated in GM61, as an invalid
fieldname.

 By
Demonstration
TCR – R3, W3

GM65 6.1.9.1

An ALE implementation SHALL interpret an
absolute address fieldname as a fixed field
comprising length contiguous bits starting
at offset offset within memory bank bank.

 By
Demonstration
TCR – R17,
W14

GM66 6.1.9.1
If offset is omitted, the ALE
implementation SHALL treat the fieldname in
the same way as if offset were 0

 By
Demonstration
TCR – R17,
W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 18 of 150

GM67 6.1.9.1
When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret bank as
given in Table 11

 By
Demonstration
TCR – R8, R17,
W14

GM68 6.1.9.1
Any other bank value not in Table 11
SHALL result in a “field not found” condition
when interacting with a Gen2 Tag.

 By
Demonstration
TCR – R17,
W14

GM69 6.1.9.1

When interacting with a Gen2 Tag, the
fieldname SHALL be interpreted as referring
to the contiguous field whose most significant
bit is offset and whose least significant bit
is bit (offset + length – 1), following the
addressing convention specified in [Gen2].

 By
Demonstration
TCR – R8, R17,
W14

GM70* 6.1.9.1

When interacting with a Gen1 Tag, an ALE
implementation SHALL interpret a bank of
0 as referring to the EPC memory of the Tag.
Any other bank value SHALL result in a
“field not found” condition when interacting
with a Gen1 Tag. The offset field SHALL
be interpreted as referring to an offset from
the most significant bit of tag memory, and
the fieldname SHALL be interpreted as
referring to the contiguous field whose most
significant bit is offset and whose least
significant bit is bit (offset + length –
1), following that addressing convention.

 N/A

GM71 6.1.9.1

The default datatype for absolute address
fieldnames is uint. The default format for
absolute address fieldnames is hex. The set
of legal datatypes for an absolute address
fieldname SHALL be the set of datatypes for
which binary encoding and decoding is
defined, that is, uint, bits, epc and any
implementation-specific datatypes that
support binary encoding and decoding.

 By
Demonstration
TCR – R8, R17,
W14

GM72 6.1.9.2

An ALE implementation SHALL recognize
any string of the form @bank.oid as a valid
fieldname as specified in this sub-section,
provided that the string also meets the
constraints: The bank portion must be 0 or a
positive integer with no leading zeros. The
oid portion must be a valid Object Identifier
represented in the URN syntax specified in
[RFC3061].

 By
Demonstration
TCR – R18,
W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 19 of 150

GM73 6.1.9.2

An ALE implementation SHALL interpret a
variable fieldname as a variable field,
referring to an ISO 15962 “data set” whose
Object Identifier is oid and which is encoded
in Tag memory using the encoding rules
specified in [ISO15962].

 By
Demonstration
TCR – R18,
W14

GM74 6.1.9.2
When interacting with a Gen2 Tag, an ALE
implementation SHALL interpret bank as
given in Table 12.

 By
Demonstration
TCR - R18,
W14

GM75 6.1.9.2
Any bank value, other than those in Table
12, SHALL result in a “field not found”
condition when interacting with a Gen2 Tag

 By
Demonstration
TCR – R18,
W14

GM76* 6.1.9.2

When interacting with a Gen1 Tag, an ALE
implementation SHALL result in a “field not
found” condition when referring to an ISO
data set.

 N/A

GM77 6.1.9.2

An implementation MAY choose not to
support variable fieldnames for WRITE
operations, in which case an attempt to do so
SHALL raise an “operation not possible”
condition.

 By
Demonstration
TCR – W14

GM78 6.1.9.2

An implementation MAY also choose not to
support variable fieldnames for READ
operations and for the Reading API, in which
case an attempt to do so SHALL raise an
“operation not possible” condition.

 By
Demonstration
TCR – R18

GM79 6.1.9.3

An ALE implementation SHALL recognize
variable pattern fieldnames as specified in this
section. A variable pattern fieldname has the
form @bank.oid-prefix.*, where bank
is as specified in section 6.1.9.2 , and oid-
prefix is a string conforming to the URN
syntax for OIDs specified in [RFC3061].

 By
Demonstartion
TCR – R18,
W14

GM80* 6.1.9.3

When an ECReportOutputFieldSpec
(section 8.2.11) includes a variable pattern
fieldname, the ALE implementation SHALL
report all ISO 15962 data sets in the specified
memory bank whose OID has oid-prefix
as a prefix.

 By
Demonstration
TCR – R18,
W14

GM81* 6.1.9.3

The fieldname appearing in the
ECReportMemberField (section 8.3.7)
instance corresponding to each data set
SHALL be a variable fieldname (section
6.2.9.2) containing the full OID of the data set

 By
Demonstration
TCR – R18,
W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 20 of 150

(unless overridden by a non-null name
parameter in the
ECReportOutputFieldSpec).

GM82 6.2
An ALE implementation SHALL recognize
each datatype and format defined in section
6.2 and interpret it as defined herein

 By
Demonstration
TCR – R8, R17,
W14

GM83 6.2

An ALE implementation SHALL consider a
fieldspec invalid if the format is not
compatible with the datatype, or if the format
is a read-only format and the fieldspec is
being used in a context that requires a read-
write format

 By
Demonstartion
TCR – R3, W3

GM84 6.2.1
An ALE implementation SHALL recognize
the string epc as a valid datatype as specified
in section 6.2.1

 By
Demonstration
TCR – R8, R17,
W4, W14

GM85 6.2.1
The encoding and decoding of the epc
datatype SHALL be according to the
EPCglobal Tag Data Standard [TDS1.3.1].

 By
Demonstration
TCR – R8, R17,
W5, W14

GM86 6.2.1.1

When reading and writing values of the epc
datatype in a field that includes a toggle bit
and AFI (including the epc field as specified
in section 6.1.1), decoding and encoding
SHALL take place as specified in section
6.2.1.2 .

 By
Demonstration
TCR – R8, R17,
W5, W14

GM87 6.2.1.1

When reading and writing values of the epc
datatype in a field that does not include a
toggle bit and AFI (including an absolute
address field as specified in section 6.1.9.1),
the following rule applies. Decoding SHALL
take place as specified in section 6.2.1.2 ,
using the rules for the case where the toggle
bit and the AFI are not available.

 By
Demonstation
TCR – R8, R17,
W5, W14

GM88 6.2.1.1

Encoding SHALL take using those same rules
from Section 6.2.1.2 where the toggle bit and
the AFI are not available, with the following
modifications:
• If the encoded value has more bits than

are available in the specified field, an “out
of range” condition SHALL be raised.

• If the encoded value has fewer bits than
are available in the specified field, the
encoded value SHALL be padded with

 By
Demonstration
TCR – R8, R17,
W5, W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 21 of 150

trailing zero bits to fit. That is, the most
significant bit of the encoded value is
aligned to the most significant bit of the
field, and the least significant bits of the
field beyond the encoded value are filled
with zeros.

If the EPC value is of the form
urn:epc:raw:N.A.V , an “out of range”
condition SHALL be raised (because there is
no available toggle and AFI, required for
values of this form).

GM89 6.2.1.2

An ALE implementation SHALL recognize
the format names specified in Table 13 and
permit their use with the epc datatype. The
notation “RW” below indicates that the ALE
implementation SHALL permit the format in
both reading and writing contexts, while the
notation “RO” indicates that the ALE
implementation SHALL permit the format
only in reading contexts

 By
Demonstration
TCR – R8, R17,
W5, W14

GM90 6.2.1.3

An ALE implementation SHALL recognize
pattern syntax as specified in Table 14 for
each of the formats defined for use with the
epc datatype

 By
Demonstration
TCR – R8, R17,
W5, W14

GM91 6.2.1.4

An ALE implementation SHALL recognize
grouping pattern syntax as specified in Table
15 for each of the formats defined for use
with the epc datatype.

 By
Demonstration
TCR – R8, R17,
W5, W14

GM92 6.2.1.4 EPC grouping patterns SHALL be interpreted
as given in Table 16, 17, 18 and 19.

 By
Demonstation
TCR – R16

GM93 6.2.2.
An ALE implementation SHALL recognize
the string uint as a valid datatype as
specified in section 6.2.2

 By
Demonstration
TCR – R8, R17,
W5, W14

GM94 6.2.2.1

When converting between a sequence of N
bits and a value of type uint, the leftmost bit
SHALL be considered to be the most
significant bit

 By
Demostration
TCR – R8, R17,
W5, W14

GM95 6.2.2.1
If an uint value to be encoded to a sequence
of N bits is greater than or equal to 2N, an “out
of range” condition SHALL be raised

 By
Demonstration
TCR – W14

GM96 6.2.2.2
An ALE implementation SHALL recognize
hex and decimal as valid formats for the
uint datatype, as specified in section 6.2.2.2

 By
Demonstration
TCR – R8, R17,

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 22 of 150

W5, W14

GM97 6.2.2.2

For output, the ALE implementation SHALL
construct a HexUnsignedInteger string
with no leading zeros, except that the value
zero itself is represented by a single ‘0’ digit.
The string SHALL NOT contain lowercase
letters

 By
Demonstration
TCR – R8, R17,
W5, W14

GM98 6.2.2.2 For input, the ALE implementation SHALL
accept any HexUnsignedInteger string

 By
Demonstration
TCR – R8, R17,
W5, W14

GM99 6.2.2.2

For output, the ALE implementation SHALL
construct a DecimalUnsignedInteger
string with no leading zeros, except that the
value zero itself is represented by a single ‘0’
digit

 By
Demonstration
TCR – R8, R17,
W5, W14

GM100 6.2.2.2
For input, the ALE implementation SHALL
accept any DecimalUnsignedInteger
string

 By
Demostration
TCR – R8, R17,
W5, W14

GM101 6.2.2.3

An ALE implementation SHALL recognize
pattern syntax as specified in section 6.2.2.3
for each of the formats defined for use with
the uint datatype

 By
Demonstration
TCR – R8, R17,
W5, W14

GM102 6.2.2.3

An ALE implementation SHALL interpret
these patterns as follows for both formats. If
a pattern is a single integer value (i.e.,
HexUnsignedInteger or
DecimalUnsignedInteger as
appropriate), the pattern matches a value
equal to the pattern. If a pattern is the ‘*’
character, the pattern matches any value. If a
pattern is in the form [lo-hi], the pattern
matches any value between lo and hi,
inclusive. If a pattern is in the form
&mask=compare the pattern matches any
value that is equal to compare after being
bitwise and-ed with mask

 By
Demonstration
TCR – R8, R17,
W5, W14

GM103 6.2.2.4

An ALE implementation SHALL recognize
grouping pattern syntax as specified in section
6.2.2.4 for each of the formats defined for use
with the uint datatype

 By
Demonstration
TCR – R8, R17,
W5, W14

GM104 6.2.2.4
Unsigned grouping patterns SHALL be
interpreted as given in Tables 20 and 21 plus
explanatory text

 By
Demonstration.
TCR – R8, R17,

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 23 of 150

W5, W14

GM105 6.2.3
An ALE implementation SHALL recognize
the string bits as a valid datatype as
specified in section 6.2.3

 By
Demonstration
TCR – R8, R17,
W5, W14

GM106 6.2.3.1

When reading a value of type bits, the ALE
implementation SHALL return the
unmodified sequence of bits read from the
field

 By
Demonstration
TCR – R8, R17,
W5, W14

GM107 6.2.3.1

When writing a value of type bits, table 22
SHALL be used based on the number of bits
in the of the bits value (M) and the number
of bits in the field (N):

 By
Demonstration
TCR – R8, R17,
W5, W14

GM108 6.2.3.2 An ALE implementation SHALL recognize
hex as a valid format for the bits datatype

 By
Demonstration
TCR – R8, R17,
W5, W14

GM109 6.2.3.2

For output, the ALE implementation SHALL
construct the length part without leading
zeros. The bit pattern SHALL be represented
using N HexDigit characters, where N is
the length divided by 4 and rounded up to the
next higher integer, padding with leading zero
bits as necessary. The string SHALL NOT
contain lowercase letters

 By
Demonstration
TCR – R8, R17,
W5, W14

GM110 6.2.3.2

For input, the ALE implementation SHALL
accept any HexBits string where the length
specified in the first part of the HexBits
string, divided by 4 and rounded up to the
next higher integer, matches the number of
HexDigit characters in the second part. If
the length is not divisible by 4, the ALE
implementation SHALL require the input to
be padded with leading zero bits

 By
Demonstration
TCR – R8, R17,
W5, W14

GM111 6.2.4

An ALE implementation SHALL recognize
the string iso-15962-string as a valid
datatype referring to a string of zero or more
characters drawn from the Unicode character
set [Unicode], encoded according to ISO
15962 [ISO15962].

 By
Demonstration
TCR – R8, R17,
W5, W14

GM112 6.2.4.1

An ALE implementation SHALL recognize
string as a valid format for the iso-
15962-string datatype. In the string
format, a string is represented simply as a
sequence of Unicode characters

 By
Demonstration
TCR – R8, R17,
W5, W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 24 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 25 of 150

corresponding directly to the characters
encoded in the Tag

 374
375

377
378
379
380
381

383
384
385
386
387
388

7 ALE 1.1 Reading API Functional Requirements 376
The ALE 1.1 defines specific functionality that a valid ALE Reading API implementation
must provide. The following tables outline the specific requirements that must be tested
as defined by the ALE 1.1 specification. Each test requirement entry references the ALE
1.1 Specification and the test case requirement (TCR) used to verify functionality as
defined in section 14 of this document.

7.1 Reading API Mandatory Requirements Matrix 382
The following table outlines the mandatory requirements for an ALE Reading
implementation as defined by the ALE 1.1 Specification. All mandatory Reading API
requirements have a requirement number of RMx where x is a decimal number. Any
requirement whose requirement number has an asterisk (*) following it is optional and
only tested if an implementation has implemented the feature.

Req.
No.

Protocol
Sub-
Clause

Requirements
(Requirements, Command, …)

Applies
to
(ref)

How Verified
(by Demonstration or
by Design)

RM1 8.1
An ALE implementation SHALL
implement the methods of the ALE
Reading API as specified Table 28.

 By Demonstration
TCR – R1 through
R19

RM2 8.1

getECSpec Returns the ECSpec that was
provided when the ECSpec named
specName was created by the define
method. The result SHALL be
equivalent to the ECSpec that was
provided to the
define method, but NEED NOT be
identical.

 By Demonstration
TCR – R2

RM3* 8.1.1

If the Reading API implementation is
associated with an implementation of the
Access Control API (Section 11), the
Reading API implementation SHALL
raise the SecurityException if the client
was not granted access rights to the
called method as specified in Section 11.

 By Demonstration
TCR – A3

RM4 8.1.1

An ALE implementation SHALL raise
the appropriate exception listed in Table
30 when the corresponding condition
described in Table 29 occurs.

 By Demonstration
TCR – R3

RM5 8.2
The ALE implementation SHALL
interpret the fields of an ECSpec given in
Table 31

 By Demonstration
TCR – R2, R3,
R5, R6

RM6 8.2

If includeSpecInReports is true, it
specifies that each ECReports instance
generated from this ECSpec SHALL
include a copy of the ECSpec. If false,
each ECReports instance SHALL NOT
include a copy of the ECSpec.

 By Demonstration
TCR – R6, R7,
R13

RM7

The define and immediate methods
SHALL raise an
ECSpecValidationException if any of
the following are true for an ECSpec
instance:
• The logicalReaders parameter is null,

omitted, is an empty list, or contains
any logical reader names that are not
known to the implementation.

• The boundarySpec parameter is null
or omitted, or the specified
boundarySpec leads to an
ECSpecValidationException as
specified in Section 8.2.1.

• The reportSpecs parameter is null,
omitted, empty, 2115 or any of the
members of reportSpecs leads to an
ECSpecValidationException as
specified in Section 8.2.5.

• Any member of the specified
primaryKeyFields is not a known
fieldname.

• The implementation does not support
the specified primaryKeyFields value
with the specified logical readers.

 By Demonstration
TCR – R3

RM8 8.2

As an ALE implementation accumulates
Tags during an event cycle, the
implementation SHALL consider two
Tags to be the same if both tags have the
exact same values in all of the primary
key fields. The ALE implementation
SHALL also use the same rule to
determine equality in implementing the
ADDITIONS and DELETIONS values
of ECReportSetSpec (Section 8.2.6) and
the reportOnlyOnChange feature of
ECReportSpec (Section 8.2.5).

 By Demostration
TCR – R10

RM9 8.2
If accessing any of the primary key fields
on a Tag causes a “field not found” or
“operation not possible” condition, then

 By Demonstration
TCR – R17

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 26 of 150

that Tag SHALL be omitted from the
event cycle.

RM10 8.2

If the primaryKeyFields parameter is
empty or omitted, the ALE
implementation SHALL behave as
though primaryKeyFields was set to a
list containing the single element epc

 By Demonstration
TCR – R5, R6,
R7, R9

RM11 8.2.1
The ALE implementation SHALL
interpret the fields of an
ECBoundarySpec as given in Table 32.

 By Demonstration
TCR – R5, R6,
R7, R9, R11, R12,
R14, R15

RM12 8.2.1

The define and immediate methods
SHALL raise an
ECSpecValidationException if any of
the following are true for an
ECBoundarySpec instance:
• A negative number is specified for

any of the ECTime 2173 values
duration, repeatPeriod, and
stableSetInterval.

• The value of the startTrigger or
stopTrigger, or any element of
startTriggerList or stopTriggerList
does not conform to URI syntax as
defined by [RFC2396], or is a URI
that is not supported by the ALE
implementation. Note that an empty
string does not conform to URI
syntax as defined by [RFC2396].

• No stopping condition is specified;
i.e., stopTrigger is omitted or null,
stopTriggerList is empty, duration is
zero or omitted, stableSetInterval is
zero or omitted, whenDataAvailable
is false, and no vendor extension
stopping condition is specified.

 By Demonstration
TCR – R3

RM13 8.2.2
The ALE implementation SHALL
interpret the fields of an ECTime
instance as given in Table 33

 By Demonstration
TCR – R5

RM14 8.2.3
The ALE implementation SHALL
interpret an instance of ECTimeUnit as
specified in Table 34.

 By Demonstration
TCR – R5

RM15 8.2.4

An implementation SHALL raise an
ECSpecValidationException if presented
with a URI beginning with
urn:epcglobal: that is not valid according

 By Demonstration
TCR – R3

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 27 of 150

to this specification or any other
EPCglobal specification that defines a
standardized trigger URI.

RM16 8.2.4

If a URI not beginning with
urn:epcglobal: is not valid
according to the implementation-specific
rules, the implementation SHALL raise
an ECSpecValidationException.

 By Demonstration
TCR – R3

RM17* 8.2.4.1

If an implemtation supports the Real-
time Clock Standardized Trigger, the
ALE implementation SHALL conform
to the following specification for all such
URIs valid according to the specification
below and Table 35.
A real-time clock trigger takes one of the
two following forms:
• urn:epcglobal:ale:trigger:rtc:period.o

ffset
• urn:epcglobal:ale:trigger:rtc:period.o

ffset.timezone
where period, offset, and timezone are
as specified in Table 35

 By Demonstration
TCR – R20

RM18* 8.2.4.1

If an ALE implementation chooses to
implement the Real-time Clock
Standardized Trigger, it SHALL
interpret a trigger of this form as follows.
The trigger is delivered each time the
number of milliseconds past midnight
modulo period equals offset.
“Midnight” refers to
midnight in the specified time zone,
which if omitted defaults to some
implementation dependent default value

 By Demonstration
TCR – R20

RM19 8.2.5
The ALE implementation SHALL
interpret the fields of an ECReportSpec
as given in Table 36

 By Demonstration
TCR – R5, R6,
R7, R8, R9, R10,
R11

RM20 8.2.5

The define and immediate methods
SHALL raise an
ECSpecValidationException if any of
the following are true for an
ECReportSpec instance:
• The specified reportName is an

empty string or is not accepted by the
implementation according to Section
4.5.

 By Demonstration
TCR – R3

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 28 of 150

• The specified reportName is a
duplicate of another report name in
the same ECSpec.

• The specified filterSpec leads to an
ECSpecValidationException as
specified in Section 8.2.7.

• The specified groupSpec leads to an
ECSpecValidationException as
specified in Section 8.2.9.

• The specified output leads to an
ECSpecValidationException as
specified in Section 8.2.10.

• Any element of statProfileNames is
not the name of a known statistics
profile.

RM21 8.2.5

An ECReports instance SHALL include
an ECReport instance corresponding to
each ECReportSpec in the governing
ECSpec, in the same order specified in
the ECSpec, except that an ECReport
instance SHALL be omitted under the
following circumstances:
• If an ECReportSpec has

reportIfEmpty set to false, then the
corresponding ECReport instance
SHALL be omitted from the
ECReports for this event cycle if the
final, filtered set of Tags is empty
(i.e., if the final Tag list would be
empty, or if the final count would be
zero).

• If an ECReportSpec has
reportOnlyOnChange set to true, then
the corresponding ECReport instance
SHALL be omitted from the
ECReports for this event cycle if the
filtered set of Tags is identical to the
filtered prior set of Tags, where
equality is tested by considering the
primaryKeyFields as specified in the
ECSpec (see Section 8.2), and where
the phrase ‘the prior set of Tags’ is as
defined in Section 8.2.6. This
comparison takes place before the
filtered set has been modified based
on reportSet or output parameters.

 By Demonstration
TCR - R5, R6, R7,
R8, R9, R10, R11

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 29 of 150

The comparison also disregards
whether the previous ECReports was
actually sent due to the effect of this
parameter, or the reportIfEmpty
parameter.

RM22 8.2.5

When the processing of reportIfEmpty
and reportOnlyOnChange results in all
ECReport instances being omitted from
an ECReports for an event cycle, then
the delivery of results to subscribers
SHALL be suppressed altogether. That
is, a result consisting of an ECReports
having zero contained ECReport
instances SHALL NOT be sent to a
subscriber.

 By Demonstration
TCR – R15

RM23 8.2.5

An ECReports instance SHALL always
be returned to the caller of immediate or
poll at the end of an event cycle, even if
that ECReports instance contains zero
ECReport instances.

 By Demonstration
TCR – R5, R6,
R7, R8, R13, R18

RM24 8.2.5

The statProfileNames parameter is a list
of ECStatProfileName, each of which
corresponds to a statistics profile that
will be included in the ECReports. If the
ALE engine does not recognize any
name in the list it SHALL raise an
ECSpecValidationException.

 By Demonstration
TCR – R3

RM25 8.2.6

An ALE implementation SHALL
interpret an instance of
ECReportSetSpec as specified in Table
37.

 By Demonstration
TCR - R5, R6, R7,
R8, R9, R10, R11

RM26 8.2.6

The meaning of “the prior set of Tags” is
as follows. For a given subscriber to an
ECSpec, beginning with the second
event cycle to be completed after the
subscribe call, the prior set of Tags
SHALL refer to the set of Tags read
during the immediately previous event
cycle for that ECSpec. For the first event
cycle to be completed after the subscribe
call for a given subscriber, and for a poll
call, the prior set of Tags SHALL refer
to either the set of Tags read during
some previous event cycle for that
ECSpec, or the empty set, at the
discretion of the implementation.

 By Demonstration
TCR – R7, R9,
R10, R12 , R15

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 30 of 150

RM27 8.2.7
The ALE implementation SHALL
interpret the fields of an ECFilterSpec as
given in Table 38

 By Demonstration
TCR – R16, R17

RM28 8.2.7

The define and immediate methods
SHALL raise an
ECSpecValidationException if any of
the following are true for an
ECFilterSpec instance:
• Any element of includePatterns is not

a syntactically valid epc-tag pattern
as specified in Section 6.2.1.3.

• Any element of excludePatterns is
not a syntactically valid epc-tag
pattern as specified in Section
6.2.1.3.

• Any element of filterList leads to an
ECSpecValidationException as
specified in Section 8.2.8.

 By Demonstration
TCR – R3

RM29 8.2.7

A Tag SHALL be included in the final
report if it passes the test specified by
every ECFilterListMember in filterList,
as defined below [sic] (i.e the last part of
Section 8.2.7)

 By Demonstration
TCR – R16, R17

RM30 8.2.8

The ALE implementation SHALL
interpret the fields of an
ECFilterListMember as given in Table
39

 By Demonstration
TCR – R16, R17

RM31 8.2.8

The define and immediate methods
SHALL raise an
ECSpecValidationException or
CCSpecValidationException (in the
Reading API or the Writing API,
respectively) if any of the following are
true for any ECFilterListMember
instance:
• The specified fieldspec is invalid (see

Section 8.2.12).
• The patList is empty.
• Any element of patList does not

conform to the syntax rules for
patterns implied by the specified
fieldspec.

 By Demonstration
TCR – R3, W3

RM32 8.2.9
The ALE implementation SHALL
interpret the fields of an ECGroupSpec
as given in Table 40.

 By Demonstration
TCR – R16

RM33 8.2.9 The define and immediate methods By Demonstration

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 31 of 150

SHALL raise an
ECSpecValidationException if any of
the following are true for an
ECGroupSpec instance:
• The specified fieldspec is invalid (see

Section 8.2.12).
• The specified fieldspec implies a

datatype and format for which no
grouping pattern syntax is defined.

• Any element of patternList does not
conform to the syntax rules for
grouping patterns implied by the
specified fieldspec.

• The elements of patternList are not
disjoint, according to the definition of
disjointedness defined by the
datatype and format implied by the
specified fieldspec.

TCR – R3

RM34 8.2.9
Every filtered Tag that is part of an event
cycle SHALL be assigned to exactly one
group for purposes of reporting.

 By Demonstration
TCR – R16, R17

RM35 8.2.9

If the field value matches one of the
grouping patterns in patternList, the
group name SHALL be computed from
the field value according to the formula
specified in the definition of the datatype
and format implied by fieldspec.

 By Demonstration
TCR-

RM36 8.2.9

If the field value does not match any of
the grouping patterns in patternList, or if
accessing the field causes a “field not
found” or “operatio not possible”
condition, the Tag SHALL be assigned
to a special “default group.”

 By Demonstration
TCR-

RM37 8.2.9 The name of the default group SHALL
be null.

 By Demonstration
TCR – R5

RM38 8.2.9

If the pattern list is empty (or if the
group parameter of the ECReportSpec is
null or omitted), then all Tags SHALL
be assigned to the default group.

 By Demonstration
TCR-

RM39 8.2.10

If any of includeEPC, includeTag,
includeRawHex, or includeRawDecimal
are true, or if fieldList is non-empty, the
ALE implementation SHALL set the
groupList parameter of each
ECReportGroup instance to an
ECReportGroupList instance, which in

 By Demostration
TCR – R6, R7, R8
R15, R16

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 32 of 150

turn SHALL contain a list of
ECReportGroupListMember instances
having parameters set according to the
table below. Otherwise, the ALE
implementation SHALL set the
groupList parameter to null.

RM40 8.2.10

If includeCount is true, the ALE
implementation SHALL set the
groupCount parameter of each
ECReportGroup instance to an
ECReportGroupCount instance, with
parameters set according to the table
below. Otherwise, the ALE
implementation SHALL set the
groupCount parameter to null.

 By Demonstration
TCR – R7, R8,
R13, R16, R17

RM41 8.2.10

The ALE implementation SHALL
interpret the fields of an
ECReportOutputSpec as given in Table
41.

 By Demonstration
TCR - R6, R7, R8
R15, R16

RM42 8.2.10

The define and immediate methods
SHALL raise an
ECSpecValidationException if any of
the following are true for any
ECReportOutputSpec instance:
• Two members of fieldList have the

same name (after applying defaults as
specified in Section 8.2.11).

• Any member of fieldList has a
fieldspec parameter that is an invalid
ECFieldSpec (see Section 8.2.12).

• All five booleans includeEPC,
includeTag, includeRawHex,
includeRawDecimal, and
includeCount are false, fieldList is
empty or omitted, and there is no
vendor extension to
ECReportOutputSpec.

 By Demonstration
TCR – R3

RM43 8.2.11

The ALE implementation SHALL
interpret the fields of an
ECReportOutputFieldSpec as given in
Table 41

 By Demonstration
TCR - R6, R7, R8
R15, R16

RM44 8.2.12
An ALE implementation SHALL
interpret an ECFieldSpec instance as
given in Table 42.

 By Demonstration
TCR – R18

RM45 8.2.12 An ALE implementation SHALL
consider an ECFieldSpec instance

 By Demonstration
TCR – R17

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 33 of 150

invalid if any of the following are true:
• The value of fieldname is not a valid

absolute address fieldname as defined
in Section 6.1.9.1, a valid variable
fieldname as defined in Section
6.1.9.2, a valid variable pattern
fieldname as defined in Section
6.1.9.3, the name of a built-in
fieldname as defined in Section 6.1
or otherwise provided by the ALE
implementation as a vendor
extension, or a user-defined
fieldname defined via the Tag
Memory API (Section 7).

• The value of fieldname is a valid
variable pattern fieldname as defined
in Section 6.1.9.3, but the
ECFieldSpec instance is in some
context other than an
ECReportOutputFieldSpec instance.

• The value of datatype is not a valid
datatype for the specified fieldname.

• The value of format is not a valid
format for the specified fieldname
and specified datatype (or the default
datatype for the specified fieldname,
if datatype is omitted).

RM46 8.2.14

The define and immediate methods of
the ALE API (Section 8.1) SHALL raise
an ECSpecValidationException if any of
the conditions in the bulleted list in
Section 8.2.14 are true.

 By Demonstation
TCR – R3

RM47 8.3
The ECReports implementation SHALL
include these fields according to Table
44

 By Demonstration
TCR – R5, R6, R7

RM48 8.3.1

The ALE implementation SHALL set the
initiationCondition field of an
ECReports instance generated at the
conclusion of an event according to the
condition that caused the event cycle to
start, as specified in Table 45.

 By Demonstration
TCR - R5, R6, R7,
R19

RM49 8.3.2

The ALE implementation SHALL set the
terminationCondition field of an
ECReports instance generated at the
conclusion of an event cycle according
to the condition that caused the event

 By Demonstration
TCR - R5, R6, R7

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 34 of 150

cycle to end, as specified Table 46.

RM50 8.3.3
An ALE implementation SHALL
construct an ECReport as given in Table
47.

 By Demonstration
TCR - R5, R6, R7

RM51 8.3.4
An ALE implementation SHALL
construct an ECReportGroup as given in
Table 48.

 By Demonstration
TCR - R5, R6, R7

RM52 8.3.5
An ALE implementation SHALL
construct an ECReportGroupList as
given in Table 49.

 By Demonstration
TCR - R5, R6, R7

RM53 8.3.5

Each distinct Tag included in this group
SHALL have a distinct
ECReportGroupListMember element in
the ECReportGroupList, even if those
ECReportGroupListMember elements
would be identical due to the fields and
formats selected.

 By Demonstration
TCR - R5, R6, R7

RM54 8.3.5

If both tags are read in the same event
cycle, and ECReportOutputSpec
specified includeEPC true and all other
formats false, then the resulting
ECReportGroupList SHALL have two
ECReportGroupListMember elements,
each having the same pure identity URI
in the epc field.

 By Demonstration
TCR – R16

RM55 8.3.5

Similarly, if two Tags have the same
values in one or more user defined fields,
and ECReportOutputSpec only specified
reading from those fields, the resulting
ECReportGroupList SHALL have two
ECReportGroupListMember elements,
each having the same user fields in the
fieldList parameter.

 By Demonstration
TCR – R16

RM56 8.3.6

An ALE implementation SHALL
construct an
ECReportGroupListMember from
information read from a single Tag, as
given in Table 50

 By Demonstration
TCR - R5, R6, R7

RM57 8.3.7
An ALE implementation SHALL
construct an ECReportMemberField as
given in Table 51

 By Demonstration
TCR - R5, R6, R7

RM58 8.3.8
An ALE implementation SHALL
construct an ECReportGroupCount as
given in Table 52.

 By Demonstration
TCR - R5, R6, R7

RM59 8.3.9 An ALE implementation SHALL
construct an ECTagStat as given in

 By Demonstration
TCR – R6

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 35 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 36 of 150

Table 53

RM60 8.3.10
An ALE implementation SHALL
construct an ECReaderStat as given in
Table 54

 By Demonstration
TCR – R6

RM61 8.3.12

An ALE implementation SHALL
include one ECTagTimestampStat in an
ECReportGroupListMember if the
TagTimestamps statistics profile was
included in the corresponding
ECReportSpec and the implementation
chooses to implement the
TagTimestamps statistics profile.

 By Demonstration
TCR - R6

RM62 8.3.12
An ALE implementation SHALL
construct an ECTagTimestampStat as
given in Table 55

 By Demonstration
TCR – R6

RM63* 8.3.12

Implementations MAY choose to use
any clock that they wish to measure
firstSightingTime and lastSightingTime,
but they SHALL correct for any
differences in clocks such that those time
stamps are brought into synchronization
with the date field of ECReports.

 By Demonstration
TCR – R6

RM64 8.4

Referring to the state transition tables in
Section 5.6.1, whenever a transition
specifies that “reports are delivered to
subscribers” the ALE implementation
SHALL attempt to deliver the results to
each subscriber by invoking the
callbackResults method of the
ALECallback interface once for each
subscriber, passing the ECReports for
the event cycle as specified above, and
using the binding and addressing
information specified by the notification
URI for that subscriber as specified in
the subscribe call.

 By Demonstration
TCR – R4, R7,
R9, R10, R11,
R12, R14, R15

 389

391
392
393
394
395

8 ALE 1.1 Writing API Functional Requirements 390
The ALE 1.1 defines specific functionality that a valid ALE Writng API implementation
must provide. The following tables outline the specific requirements that must be tested
as defined by the ALE 1.1 specification. Each test requirement entry references the ALE
1.1 Specification and the test case requirement (TCR) used to verify functionality as
defined in section 15 of this document.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 37 of 150

8.1 Writing API Mandatory Requirements Matrix 396
The following table outlines the mandatory requirements for an ALE Writng
implementation as defined by the ALE 1.1 Specification. All mandatory Writing API
requirements have a requirement number of WMx where x is a decimal number. Any
requirement whose requirement number has an asterisk (*) following it is optional and
only tested if an implementation has implemented the feature. Only Gen2 tags will be
used for conformance testing. Requirements only for Gen1 tags will have “N/A” in the
“How Verified” column.

397
398
399
400
401
402
403
404

Req.
No.

Protoco
l
Sub-
Clause

Requirements
(Requirements, Command, …)

Applies
to
(ref)

How Verified
(by Demonstration or
by Design)

WM1 9.1
An ALE implementation SHALL
implement the above methods of the ALE
Writing API as specified in Table 56.

 By Demonstration
TCR – W1 though
W15

WM2 9.1
The lifecycle of a new CCSpec SHALL
be subject to the provisions of Section
5.6.1

 By Demonstration
TCR – W2, W4,
W5, W6, W7, W8

WM3 9.1

The CCSpec returned in the getCCSpec
result SHALL be equivalent to the
CCSpec that was provided to the define
method, but NEED NOT be identical.

 By Demonstration
TCR – W2

WM4 9.1

If the Writing API implementation is
associated with an implementation of the
Access Control API (Section 11), the
Writing API implementation SHALL
raise this exception if the client was not
granted access rights to the called method
as specified in Section 11.

 By Demonstration
TCR – A3

WM5 9.1

An ALE implementation SHALL raise the
appropriate exception listed in Table 58
when the corresponding condition
described in Table 57 occurs.

 By Demonstration
TCR – W3

WM6 9.3
The ALE implementation SHALL
interpret the fields of a CCSpec as given
in Table 59.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM7 9.3

If includeSpecInReports is true, specifies
that each CCReports instance generated
from this CCSpec SHALL include a copy
of the CCSpec

 By Demonstration
TCR – W8

WM8 9.3

The define and immediate methods
SHALL raise a
CCSpecValidationException if any of the
following are true for a CCSpec instance:

 By Demonstration
TCR – W3

• The logicalReaders parameter is null,
omitted, is an empty list, or contains
any logical reader names that are not
known to the implementation.

• The boundarySpec parameter is null or
omitted, or the specified
boundarySpec leads to a
CCSpecValidationException as
specified in Section 9.3.1.

• The cmdSpecs parameter is null,
omitted, empty, or any of the members
of cmdSpecs leads to a
CCSpecValidationException as
specified in Section 9.3.2.

WM9 9.3.1
The ALE implementation SHALL
interpret the fields of a CCBoundarySpec
as given in Table 60.

 By Demonstration
TCR - W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM10 9.3.1

The define and immediate methods
SHALL raise a
CCSpecValidationException if any of the
following are true for a CCBoundarySpec
instance:
• A negative number is specified for any

of the ECTime values duration,
repeatPeriod, or noNewTagsInterval.

• Any element of startTriggerList or
stopTriggerList does not conform to
URI syntax as defined by [RFC2396],
or is a URI that is not supported by the
ALE implementation. Note that an
empty string does not conform to URI
syntax as defined by [RFC2396].

• A negative number is specified for
tagsProcessedCount.

• No stopping condition apart from
afterError is specified; i.e.,
stopTriggerList is empty, duration is
zero or omitted, noNewTagsInterval is
zero or omitted, tagsProcsssedCount is
zero or omitted, and no vendor
extension stopping condition is
specified.

 By Demonstration
TCR – W3

WM11 9.3.2 The ALE implementation SHALL
interpret the fields of an CCCmdSpec as

 By Demonstration
TCR - W4, W5,

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 38 of 150

given Table 61 W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM12 9.3.2

The ALE implementation SHALL process
each Tag that matches filterSpec acquired
during a command cycle in a manner
equivalent to carrying out the operations
specified in opSpecs in the order
specified.

 By Demonstration
TCR – W14

WM13 9.3.2

The define and immediate methods
SHALL raise a
CCSpecValidationException if any of the
following are true for a CCCmdSpec
instance:
• The specified name is an empty string

or is not accepted by the
implementation according to Section
4.5.

• The specified name is a duplicate of
another CCCmdSpec name in the
same CCSpec. The specified filterSpec
leads to a CCSpecValidationException
as specified in Section 9.3.3.

• The specified opSpecs leads to a
CCSpecValidationException as
specified in Section 9.3.4.

• Any element of statProfileNames is
not the name of a known statistics
profile.

 By Demonstration
TCR – W3

WM14 9.3.2

A CCReports instance SHALL include an
CCReport instance corresponding to each
CCCmdSpec in the governing CCSpec, in
the same order specified in the CCSpec,
except that a CCReport instance SHALL
be omitted under the following
circumstance:
• If a CCReportSpec has reportIfEmpty

set to false, then the corresponding
CCReport instance SHALL be omitted
from the CCReports for this command
cycle if the final, filtered set of Tags is
empty (i.e., if there are no Tags to
operate upon).

 By Demonstration
TCR – W5, W6,
W7, W8, W9,
W10, W11, W12,
W13, W14, W15

WM15 9.3.2
When the processing of reportIfEmpty
results in all CCReport instances being
omitted from a CCReports for a command

 By Demonstration
TCR – W4, W5,
W10

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 39 of 150

cycle, then the delivery of results to
subscribers SHALL be suppressed
altogether. That is, a result consisting of a
CCReports having zero contained
CCReport instances SHALL NOT be sent
to a subscriber.

WM16 9.3.2

A CCReports instance SHALL always be
returned to the caller of immediate or poll
at the end of a command cycle, even if
that CCReports instance contains zero
CCReport instances.

 By Demonstration
TCR – W6, W7,
W8, W9

WM17 9.3.3
The ALE implementation SHALL
interpret the fields of a CCFilterSpec as
given in Table 62.

 By Demonstration
TCR – W5, W6,
W7, W8, W9,
W10, W11, W12,
W13, W14, W15

WM18 9.3.3

The define and immediate methods
SHALL raise a
CCSpecValidationException if any of the
following are true for a CCFilterSpec
instance:
• Any element of filterList is leads to a

CCSpecValidationException as
specified in Section 8.2.8.

 By Demonstration
TCR – W3

WM19 9.3.3

A Tag SHALL be subject to the
operations specified in the CCCmdSpec if
it passes the test specified by every
ECFilterListMember in filterList, as
defined in Sections 8.2.7 and 8.2.8.

 By Demonstration
TCR – W5, W6,
W7, W8, W9,
W10, W11, W12,
W13, W14, W15

WM20 9.3.3

If accessing a field specified by any
element of filterList causes a “field not
found” or “operation not possible”
condition, that Tag SHALL not be
processed as part of this CCCmdSpec.

 By Demonstration
TCR – W14

WM21 9.3.4
The ALE implementation SHALL
interpret the fields of a CCOpSpec as
given in Table 63.

 By Demonstration
TCR – W5, W6,
W7, W8, W9,
W10, W11, W12,
W13, W14, W15

WM22 9.3.4

The define and immediate methods
SHALL raise a
CCSpecValidationException if any of the
following are true for a CCOpSpec
instance:
• The specified opType value is not one

of the standard opType values

 By Demonstration
TCR – W3

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 40 of 150

specified in Section 9.3.5, or an
implementation-specific value known
to the ALE implementation.

• The specified opType requires a
fieldspec, and fieldspec is null or
omitted.

• The specified opType does not require
a fieldspec, and fieldspec is specified.

• The specified fieldspec is invalid
according to Section 8.2.12.

• The specified opType requires a
dataSpec, and dataSpec is null or
omitted.

• The specified opType does not require
a dataSpec, and dataSpec is specified.

• The specified dataSpec is invalid
according to Section 9.3.6.

• The specified dataSpec specifies a
value that is invalid for the specified
operation, as specified in Section
9.3.6.

• When opName is specified, the
specified opName is the same as an
opName of another CCOpSpec within
the same CCCmdSpec instance.

WM23* 9.3.5.
1

An ALE implementation SHALL
recognize the values defined in the
following subsections of 9.3.5.1 as valid
operands for the CHECK
CCOpSpecType.

 By Demonstration
TCR – W14

WM24* 9.3.5.
1.1

When the fieldspec is epcBank (EPC/UII
memory bank), CHECK dataSpec values
of the following forms SHALL be
recognized:
urn:epcglobal:ale:check:iso15962

 By Demonstration
TCR – W14

WM25* 9.3.5.
1.1

When interacting with a Gen2 Tag, an
ALE implementation SHALL check the
EPC/UII memory bank (Bank 01) of the
Tag as follows. A CCOpStatus of
MEMORY_CHECK_ERROR SHALL be
indicated if any of the following are true:
• The toggle bit (bit 17h) is equal to

zero.
• The AFI bits (bits 18h-1Fh) do not

contain an ISO 15962 Application
Family Identifier (AFI) that is

 By Demonstration
TCR – W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 41 of 150

recognized by the implementation.
• The memory bank does not contain an

ISO 15962 Data Storage Format
Identifier (DSFID) that is recognized
by the implementation.

• The remaining contents of the memory
bank are not valid according to ISO
15962 [ISO15962].

• The remaining contents of the memory
bank include two or more data sets
having the same object identifier
(OID).

WM26* 9.3.5.
1.2

When the fieldspec is userBank (EPC/UII
memory bank), CHECK dataSpec values
of the following forms SHALL be
recognized:
urn:epcglobal:ale:check:iso15962

 By Demonstration
TCR – W14

WM27* 9.3.5.
1.2

When interacting with a Gen2 Tag, an
ALE implementation SHALL check the
User memory bank (Bank 11) of the Tag
as follows. A CCOpStatus of
MEMORY_CHECK_ERROR SHALL be
indicated if any of the following are true:
• The memory bank does not contain an

ISO 15962 Data Storage Format
Identifier (DSFID) that is recognized
by the implementation.

• The remaining contents of the memory
bank are not valid according to ISO
15962 [ISO15962].

• The remaining contents of the memory
bank include two or more data sets
having the same object identifier
(OID).

 By Demonstration
TCR – W14

WM28* 9.3.5.
2

An ALE implementation SHALL
recognize the values defined in the
following subsections as valid operands
for the INITIALIZE CCOpSpecType.

 By Demonstration
TCR – W14

WM29* 9.3.5.
2

An ALE implementation SHALL raise a
CCSpecValidationException if the
combination of fieldspec and value for the
INITIALIZE CCOpSpecType are not
recognized.

 By Demonstration
TCR – W3

WM30* 9.3.5.
2.1

When the fieldspec is epcBank (EPC/UII
memory bank), INITIALIZE dataSpec
values of the following forms SHALL be

 By Demonstration
TCR – W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 42 of 150

recognized:
urn:epcglobal:ale:init:iso15962:xAA[.xD
D][.force] where AA denotes two
hexadecimal digits and DD denotes two or
more hexadecimal digits.

WM31* 9.3.5.
2.1

When interacting with a Gen2 Tag, an
ALE implementation SHALL initialize
the EPC/UII memory bank (Bank 01) of
the Tag as follows:
Write a one into bit 17h, write the value
AA into bits 18h-1Fh, write the value DD
beginning at bit 20h (the number of bits so
written being four times the number of
characters in DD), followed by eight zero
bits (note: the eight zero bits indicate that
there are no ISO data sets in the EPC/UII
memory bank). Subsequent operations on
the Tag will interpret AA as the ISO
15962 Application Family Identifier
(AFI), and DD as the
3203 ISO 15962 Data Storage Format
Identifier (DSFID). If xDD is omitted,
the ALE implementation SHALL supply a
default value for DD.

 By Demonstration
TCR – W5, W14

WM32* 9.3.5.
2.1

If the optional .force is not present in the
dataSpec value, then the ALE
implementation SHALL omit all
initialization steps as described above if
the prior contents of the bits 17h is a one,
and the prior contents of bits 18h through
27h are non-zero.

 By Demonstration
TCR – TCR W5,
W14

WM33* 9.3.5.
2.1

When interacting with a Gen1 Tag, the
implementation SHALL raise an
“operation not possible” condition.

 N/A

WM34* 9.3.5.
2.2

When the fieldspec is userBank (User
memory bank), INITIALIZE dataSpec
values of the following form SHALL be
recognized:
urn:epcglobal:ale:init:iso15962:[xDD][.fo
rce] where DD denotes two or more
hexadecimal digits.

 By Demonstration
TCR – TCR W5,
W14

WM35* 9.3.5.
2.2

When interacting with a Gen2 Tag,
3227 an ALE implementation SHALL
initialize the User memory bank (Bank
11) of the Tag as follows:
3229 Write the value DD beginning at bit

 By Demonstration
TCR – TCR W5,
W14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 43 of 150

00h (the number of bits so written being
four times the number of characters in
DD), followed by eight zero bits (note: the
eight zero bits indicate that there are no
ISO data sets in the EPC/UII memory
bank). Subsequent operations on the Tag
will interpret DD as the ISO 15962 Data
Storage Format Identifier (DSFID). If
xDD is omitted, the ALE implementation
SHALL supply a default value for DD.

WM36* 9.3.5.
2.2

If the optional .force is not present in the
dataSpec value, then the ALE
implementation SHALL omit all
initialization steps as described above if
the prior contents of the bits 00h through
07h are non-zero.

 By Demonstration
TCR – TCR W5,
W14

WM37* 9.3.5.
2.2

When interacting with a Gen1 Tag, the
implementation SHALL raise an
“operation not possible” condition.

 N/A

WM38 9.3.6
The ALE implementation SHALL
interpret the fields of a CCOpDataSpec as
given in Table 65.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM39 9.3.6

The ALE implementation SHALL use
Table 66 to determine what data value is
used for the command that includes a
CCOpDataSpec

 By Demonstration
TCR - W5, W10,
W11, W12, W13,
W14

WM40 9.3.6

The define and immediate methods
SHALL raise a
CCSpecValidationException if any of the
following are true for a CCOpDataSpec
instance, according to the value of
specType in Table 67. In addition, the
define and immediate methods SHALL
raise a CCSpecValidationException if a
CCOpDataSpec instance is supplied but in
Table 64 the opType specifies “[must be
omitted]” in the fourth column.

 By Demonstration
TCR – W3

WM41 9.3.8
The ALE implementation SHALL
interpret the data parameter of a LOCK
command as given in Table 68.

 By Demonstration
TCR – W5

WM42 9.3.8

The ALE implementation SHALL
interpret “subsequent privileged
operations” when interacting with a Gen2
Tag as given in Table 69

 By Demonstration
TCR – W5, W10

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 44 of 150

WM43 9.3.10

The define and immediate methods of the
ALECC API (Section 9.1) SHALL raise a
CCSpecValidationException if any of the
following are true:
• The specified specName is an empty

string or is not accepted by the
implementation according to Section
4.5.

• The logicalReaders parameter of
CCSpec is null, omitted, is an empty
list, or contains any logical reader
names that are not known to the
implementation.

• The boundarySpec parameter of
CCSpec is null or omitted.

• The cmdSpecs parameter of CCSpec is
null, omitted, or empty.

• The duration, repeatPeriod, or
noNewTagsInterval parameter of
CCBoundarySpec is negative.

• Any element of the startTriggerList or
stopTriggerList parameter of
CCBoundarySpec does not conform to
URI syntax as defined by [RFC2396],
or is a URI that is not supported by the
ALE implementation. Note that an
empty string does not conform to URI
syntax as defined by [RFC2396].

• The tagsProcessedCount of
CCBoundarySpec is negative.

• No stopping condition apart from
afterError is specified 3320 in
CCBoundarySpec; i.e.,
stopTriggerList is empty, and neither
duration nor tagsProcessedCount nor
noNewTagInterval nor any vendor
extension stopping condition is
specified.

• Any CCCmdSpec instance has a name
that is an empty string or that is not
accepted by the implementation
according to Section 4.5.

• Two CCCmdSpec instances have
identical values for their name fields.

• The patList parameter of any
ECFilterListMember instance is

 By Demonstration
TCR – W3

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 45 of 150

empty, null, or omitted, or any element
of patList does not conform to the
syntax rules for patterns implied by the
specified fieldspec.

• The opType parameter of a CCOpSpec
is not one of the standard opType
values specified in Section 9.3.5, or an
implementation-specific value known
to the ALE implementation.

• The opType parameter of a CCOpSpec
requires a fieldspec, and fieldspec is
null or omitted.

• The opType parameter of a CCOpSpec
does not require a fieldspec, and
fieldspec is specified.

• The fieldspec parameter of a
CCOpSpec is invalid according to
Section 8.2.12.

• The opType parameter of a CCOpSpec
requires a dataSpec, and dataSpec is
null or omitted.

• The opType parameter of a CCOpSpec
does not require a dataSpec, and
dataSpec is specified.

• The dataSpec parameter of a
CCOpSpec is invalid according to
Section 9.3.6.

• The dataSpec parameter of a
CCOpSpec specifies a value that is
invalid for the specified operation, as
specified in Section 9.3.6.

• Two or more CCOpSpec instances
within the same CCCmdSpec instance
specify the same (non-empty)
opName.

• Any value of CCStatProfileName is
not recognized, or is recognized but
the specified statistics report is not
supported.

WM44 9.4
The implementation SHALL include these
fields according to the following
definitions in Table 70.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM45 9.4.1 The ALE implementation SHALL set the
initiationCondition field of a CCReports

 By Demonstration
TCR – W4, W5,

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 46 of 150

instance generated at the conclusion of a
command cycle according to the condition
that caused the command cycle to start, as
specified in Table 71

W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM46 9.4.2

The ALE implementation SHALL set the
terminationCondition field of a
CCReports instance generated at the
conclusion of a command cycle according
to the condition that caused the command
cycle to end, as specified Table 72

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM47 9.4.3
An ALE implementation SHALL
construct a CCCmdReport as given in
Table 73.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM48 9.4.4
An ALE implementation SHALL
construct a CCTagReport as given in
Table 74.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM49 9.4.5 An ALE implementation SHALL
construct a CCOpReport as in Table 75

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM50 9.4.5 The value of the data field SHALL be
constructed according to Table 76.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM51 9.4.6 An ALE implementation SHALL return
CCStatus codes according to Table 77.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM52 9.4.7
An ALE implementation SHALL
construct a CCTagStat as given in Table
78.

 By Demonstration
TCR – W4, W5,
W6, W7, W8, W9,
W10, W11, W12,
W13, W14

WM53 9.5

An ALE implementation SHALL
implement the methods of the ALE
Writing API for EPCCache as specified in
Table 79.

 By Demonstration
TCR – W11

WM54 9.5 For defineEPCCache, if spec is null, the
implementation SHALL use default

 By Demonstration
TCR – W11

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 47 of 150

settings for any controls over the
operation fo the EPC Cache. (in Table 79)

WM55 9.5

The implementation SHALL maintain
each defined EPC Cache in the following
manner. An EPC Cache is an ordered list
of EPCs, whose initial contents is
specified by the replenishment argument
to defineEPCCache. The EPC Cache may
be referred to by name in a
CCOpDataSpec whose specType is equal
to CACHE. Each time during a command
cycle that a Tag is processed using that
CCOpDataSpec, the first element of the
EPC Cache is removed and used as the
value for the operation specified in the
CCOpSpec. If there is no first element
(because the EPC Cache is empty), then
the operation results in an
EPC_CACHE_DEPLETED error that is
reported in the CCOpReport for that Tag.
At any time, the ALE client may add more
EPCs to the end of list by invoking the
replenishEPCCache method.

 By Demonstration
TCR – W11

WM56

The EPCCacheSpecValidationException
SHALL NOT be raised, however, if the
spec argument to defineEPCCache is null,
or if the implementation has not made any
extensions to EPCCacheSpec. Moreover,
all implementations SHALL raise this
exception if the specified cacheName is an
empty string or is not accepted by the
implementation according to Section 4.5.

 By Demonstration
TCR – W11

WM57 9.5.1

An ALE implementation SHALL raise the
appropriate exception listed in Table 81
when the corresponding condition
described in Table 80 and in Section 9.1.1
occurs.

 By Demonstration
TCR – W3

WM58 9.5.3
An ALE implementation SHALL interpret
the fields of EPCPatternList as given in
Table 82.

 By Demonstration
TCR - – TCR
W5, W14

WM59 9.5.3

An ALE implementation SHALL interpret
each EPC pattern URI element of patterns
as denoting an ordered list of individual
EPCs obtained by enumerating in
ascending numerical order all EPCs that
match the pattern.

 By Demonstration
TCR – W11

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 48 of 150

WM60 9.5.3

An ALE implementation SHALL interpret
the overall EPCPatternList instance as
denoting an ordered list of individual
EPCs obtained by concatenating, in order,
the EPCs denoted by each EPC pattern
URI element.

 By Demonstration
TCR – W11

WM61 9.6

An ALE implementation SHALL
implement the methods of the ALE
Writing API for Association Table as
specified in Table 83

 By Demonstration
TCR – W12

WM62 9.6

The value field of each entry returned by
getAssocTableEntries SHALL be in the
format specified when the table was
defined.

 By Demonstration
TCR – W12

WM63 9.6.1

An ALE implementation SHALL raise the
appropriate exception listed in Table 85
when the corresponding condition
described in Table 84 and in Section 9.1.1
occurs.

 By Demonstration
TCR – W3

WM64 9.6.2
An ALE implementation SHALL interpret
an AssocTableSpec instance as in Table
86.

 By Demonstration
TCR – W12

WM65 9.6.2

The defineAssocTable method SHALL
raise an AssocTableValidationException
if any of the following are true:
• The value of datatype is not a valid

datatype as specified in Section 6.2 or
a datatype recognized as a vendor
extension.

• The value of format is not a valid
format for the specified datatype.

 By Demonstration
TCR – W3

WM66 9.6.3
An ALE implementation SHALL interpret
the fields of AssocTableEntryList as given
in Table 87.

 By Demonstration
TCR – W12

WM67 9.6.4
An ALE implementation SHALL interpret
the fields of AssocTableEntry as given in
Table 88.

 By Demonstration
TCR – W12

WM68 9.7

An ALE implementation SHALL
implement the methods of the ALE
Writing API for the Random Number
Generator as specified in Table 89.

 By Demonstration
TCR – W13

WM69 9.7.1

All implementations SHALL raise the
RNGValidationException if the specified
rngName is an empty string or is not
accepted by the implementation according
to Section 4.5.

 By Demonstration
TCR – W13

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 49 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 50 of 150

WM70 9.7.1

An ALE implementation SHALL raise the
appropriate exception listed in Table 90
when the corresponding condition
described in Table 89 and in Section 9.1.1
occurs.

 By Demonstration
TCR – W3

WM71 9.7.2

Implementations SHALL provide
documentation specifying both how the
parameters are interpreted by defineRNG
and how the parameters are set when
returned from getRNG.

 By Demonstration
TCR – W13
Provide required
documentation

WM72 9.7.2
An ALE implementation SHALL interpret
an RNGSpec instance as given in Table
92.

 By Demontration
TCR – W13

WM73 9.7.2

The number of bits for the random
numbers generated by this random
number generator. Random numbers
SHALL be in the range 0 through
2length−1, inclusive.

 By Demonstration
TCR – W13

WM74 9.7.2
The defineRNG method SHALL raise an
RNGValidationException if length is not
a positive integer

 By Demonstration
TCR – W13

WM75 9.8

Referring to the state transition tables in
Section 5.6.1, whenever a transition
specifies that “reports are delivered to
subscribers” the ALE implementation
SHALL attempt to deliver the results to
each subscriber by invoking the
callbackResults method of the
ALECCCallback interface once for each
subscriber, passing the CCReports for the
command cycle as specified above, and
using the binding and addressing
information specified by the notification
URI for that subscriber as specified in the
subscribe call.

 By Demonstration
TCR – W4, W5,
W10

 405
406

408
409
410
411
412

9 ALE 1.1 Tag Memory API Functional Requirements 407
The ALE 1.1 defines specific functionality that a valid ALE Tag Memory API
implementation must provide. The following tables outline the specific requirements that
must be tested as defined by the ALE 1.1 specification. Each test requirement entry
references the ALE 1.1 Specification and the test case requirement (TCR) used to verify
functionality as defined in section 16 of this document.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 51 of 150

9.1 Tag Memory API Mandatory Requirements Matrix 413
The following table outlines the mandatory requirements for an ALE Memroy
implementation as defined by the ALE 1.1 Specification. All mandatory Tag Memory
API requirements have a requirement number of TMx where x is a decimal number. Any
requirement whose requirement number has an asterisk (*) following it is optional and
only tested if an implementation has implemented the feature.

414
415
416
417
418
419

Req.
No.

Protocol
Sub-
Clause

Requirements
(Requirements, Command, …)

Applies
to
(ref)

How Verified
(by Demonstration or by
Design)

TM1 7

An implementation of The Tag Memory
Specification API SHALL provide the
TMFixedFieldListSpec specified in
Section 7.3, and SHALL also provide the
TMVariableFieldListSpec as
specified in Section 7.5

 By Demonstration
TCR – T2, T4

TM2 7.1

An ALE implementation SHALL
implement the methods of the ALE Tag
Memory Specification API as specified in
Table 23

 By Demonstration
TCR – T1, T2, T3,
T4, T5

TM3* 7.1.1

If the Tag Memory API implementation is
associated with an implementation of the
Access Control API (Section 11), the
implementation SHALL raise a security
exception if the client was not granted
access rights to the called method as
specified in Section 11.

 By Demonstration
TCR – A3

TM4 7.1.1

An ALE implementation SHALL raise the
appropriate exception listed in Table 25
when the corresponding condition as
described in Table 24 occurs.

 By Demonstration
TCR – T3

TM5 7.2
An ALE implementation SHALL support
TMFixedFieldListSpec as a
possible type of TMSpec.

 By Demonstration
TCR – T2, T4

TM6 7.2
An ALE implementation also SHALL
support TMVariableFieldListSpec
as a possible type of TMSpec.

 By Demonstration
TCR – T5

TM7 7.2

For all subtypes of TMSpec, the
defineTMSpec method SHALL raise a
TMSpecValidationException if
any of the following are true:
• Any component of the specified

TMSpec attempts to create a
fieldname that has previously been
defined through the Tag Memory
Specification API, or is one of the

 By Demonstration
TCR – T3

built-in fieldnames specified in
Section 6.1. The latter includes any
fieldname that begins with the ‘@’
character.

TM8 7.4

A TMFixedFieldSpec specifies a single
fixed-length field. An ALE
implementation SHALL interpret the
fields as given in Table 26

 By Demonstration
TCR – T4

TM9 7.4

The defineTMSpec method SHALL
raise a
TMSpecValidationException if
any of the following are true:
• The value of fieldname is a name

that has already been defined through
the Tag Memory Specification API, or
is one of the built-in fieldnames
specified in Section 6.1. The latter
includes any fieldname that begins
with the ‘@’ character.

• The value of fieldname is the same
as the fieldname parameter of another
member of the same
TMFixedFieldListSpec.

• The value of bank is negative.

• The value of length is zero or
negative.

• The value of offset is negative.

• The value of defaultDatatype is
not a known datatype, or is not a valid
datatype for the specified bank,
length, and offset (for example,
if the datatype requires more bits than
have been provided by length).

• The value of defaultFormat is not
a known format, or is not a valid
format for the specified
defaultDatatype.

 By Demonstration
TCR – T3

TM10 7.6
A TMVariableFieldSpec specifies a
variable field This type allows ALE
clients to associate a symbolic name with

 By Demostration
TCR – T5

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 52 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 53 of 150

an ISO 15962 object identifier. The
associated datatype SHALL be iso-
15962-string and the format SHALL
be string.

TM11 7.6
An ALE implementation SHALL interpret
TMVariableFieldSpec fields as given in
Table 27.

 By Demostration
TCR – T5

TM12 7.6

The defineTMSpec method SHALL
raise a
TMSpecValidationException if
any of the following are true:
• The value of fieldname is a name

that has already been defined through
the Tag Memory Specification API, or
is one of the built-in fieldnames
specified in Section 6.1. The latter
includes any fieldname that begins
with the ‘@’ character.

• The value of fieldname is the same
as the fieldname parameter of another
member of the same
TMVariableFieldListSpec.

• The value of bank is negative.

• The value of oid is not valid syntax
according to [RFC3061].

 By Demonstration
TCR – T3

 420

422
423
424
425
426

428
429
430
431
432
433

10 ALE 1.1 Access Control API Functional Requirements 421
The ALE 1.1 defines specific functionality that a valid ALE Access Control API
implementation must provide. The following tables outline the specific requirements that
must be tested as defined by the ALE 1.1 specification. Each test requirement entry
references the ALE 1.1 Specification and the test case requirement (TCR) used to verify
functionality as defined in section 17 of this document.

10.1 Access Control API Mandatory Requirements Matrix 427
The following table outlines the mandatory requirements for an ALE Access Control
implementation as defined by the ALE 1.1 Specification. All mandatory access control
API requirements have a requirement number of AMx where x is a decimal number. Any
requirement whose requirement number has an asterisk (*) following it is optional and
only tested if an implementation has implemented the feature.

Req.
No.

Protocol
Sub-

Requirements
(Requirements, Command, …)

Applies
to

How Verified
(by Demonstration or by

Clause (ref) Design)

AM1 11.1

An ALE implementation SHALL
implement the methods of the ALE
Access Control API as specified in Table
102.

 By Demonstration
TCR – A1, A2, A3,
A4

AM2 11.2
The implementation SHALL raise the
SecurityException if the client was not
granted access rights to the called method.

 By Demonstration
TCR – A3

AM3 11.2

An ALE implementation SHALL raise the
appropriate exception listed in Table 104
when the corresponding condition
described in Table 103 occurs.

 By Demonstration
TCR – A4

AM4 11.3
The ALE implementation SHALL
interpret the fields of an ACClientIdentity
as given in Table 105

 By Demonstration
TCR – A3

AM5 11.3

The defineClientIdentity, and
updateClientIdentity methods of the
Access Control API SHALL raise a
ClientIdentityValidationException under
any of the following circumstances:
• One or more of the specified

credentials is not a valid credential,
according to the implementation-
specific rules for validating
credentials.

• One or more of the specified
roleNames is not a known name for a
role.

 By Demonstration
TCR – A4

AM6 11.5
The ALE implementation SHALL
interpret the fields of an ACRole as given
in Table 106.

 By Demonstratoin
TCR – A3

AM7 11.5

The defineRole, and updateRole methods
of the Access Control API SHALL raise a
RoleValidationException under any of the
following circumstances:
• One or more of the specified

permissionNames is not a known
name for a permission.

 By Demostration
TCR – A4

AM8 11.6
The ALE implementation SHALL
interpret the fields of an ACPermission as
given in Table 107

 By Demonstration
TCR – A4

AM9 11.6

The definePermission, and
updatePermission methods of the Access
Control API SHALL raise a
PermissionValidationException under any
of the following circumstances:

 By Demonstration
TCR – A4

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 54 of 150

• The specified permissionClass is not a
known permission class.

• One or more of the specified instances
is not a valid instance string for the
specified permission class, according
to the table in Section 11.7.

AM10 11.7

An ALE implementation SHALL
recognize the following permission class
names, and implement each according to
Table 108.

 By Demonstration
TCR – A3

AM11 11.7

If a client has not been granted permission
for a given method, if that client calls the
method the ALE implementation SHALL
raise a SecurityException. However, an
ALE implementation SHALL NOT raise
a SecurityException for a method whose
specification does not include
SecurityException as a possible error
condition, regardless of permission
settings. This includes the
getStandardVersion and
getVendorVersion methods of all ALE
APIs, and the getSupportedOperations
method of the Access Control API.

 By Demonstration
TCR – A3

AM12 11.7.1

An ALE implementation SHALL
recognize strings in Table 109 as API
names when they appear as instances for
the Method permission class, denoting
that permission is granted to use all
methods of the specified API, including
vendor extensions.

 By Demonstration
TCR – A3

AM13 11.7.1

An ALE implementation SHALL
recognize a string of that form as a
method name when it appears as an
instance for the Method permission class.

 By Demonstration
TCR – A3

AM14 11.7.1

An ALE implementation SHALL
recognize the string consisting of a single
asterisk character (*) as denoting all
methods of all APIs when it appears as an
instance for the Method permission class.

 By Demonstration
TCR – A3

AM15 11.8
An implementation of the Access Control
API SHALL implement all methods as
specified in Section 11.1.

 By Demonstration
TCR – A1, A2, A3

AM16 11.8
If an implementation raises
UnsupportedOperationException from
any Access Control API method, it

 By Demonstration
TCR – A2
Note: part of the

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 55 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 56 of 150

SHALL provide documentation that
specifies how the client or user controls
components of the access control model –
client identities, roles, and permissions –
for which Access Control API methods
raise the UnsupportedOperationException.

demonstration is
providing the
required
documentation.

AM17 11.8

In order to insure that implementations
provide a reasonable set of facilities to
clients, an ALE implementation SHALL
conform to the rules in Section 11.8 (that
follow the non-Normative note) for
selecting which methods raise
UnsupportedOperationException.

 By Demonstration
TCR – A2

AM18 11.8

An implementation SHALL always
support getStandardVersion,
getVendorVersion, and
getSupportedOperations.

 By Demonstration
TCR – A2

AM19 11.8

As a consequence of the rules in Section
11.8, the list returned by
getSupportedOperations SHALL always
include the strings getStandardVersion,
getVendorVersion, an
getSupportedOperations (and possibly
others).

 By Demonstration
TCR – A2

AM20 11.9

An implementation SHALL provide
documentation to specify whether an
anonymous client identity is provided, and
if so what its name is.

 By Demonstration
TCR – A2
Provide required
documentation

AM21 11.10

In order to grant access to ordinary
clients, there must exist at least one client
who has permission to use the Access
Control API, or there must be some out-
of-band mechanism for establishing
access permissions. An implementation
SHALL provide documentation that
specifies how this is done.

 By Demonstration
TCR – A2
Provide required
documentation

 434

436
437
438
439
440

11 ALE 1.1 Logical Reader API Functional Requirements 435
The ALE 1.1 defines specific functionality that a valid ALE Logical Reader API
implementation must provide. The following tables outline the specific requirements that
must be tested as defined by the ALE 1.1 specification. Each test requirement entry
references the ALE 1.1 Specification and the test case requirement (TCR) used to verify
functionality as defined in section 18 of this document.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 57 of 150

11.1 Logical Reader API Mandatory Requirements Matrix 441
The following table outlines the mandatory requirements for an ALE Logical Reader API
implementation as defined by the ALE 1.1 Specification. All mandatory Logical Reader
API requirements have a requirement number of AMx where x is a decimal number. Any
requirement whose requirement number has an asterisk (*) following it is optional and
only tested if an implementation has implemented the feature.

442
443
444
445
446
447

Req.
No.

Protocol
Sub-
Clause

Requirements
(Requirements, Command, …)

Applies
to
(ref)

How Verified
(by Demonstration or by
Design)

LM1 10.3

An ALE implementation SHALL
implement the methods of the ALE
Logical Reader API as specified in Table
93.

 By Demonstration
TCR – L1, L2, L3,
L4, L5, L6

LM2 10.3

getLogicalReaderNames returns an
unordered list of the names of all logical
readers that are visible to the caller. This
list SHALL include both composite
readers and base readers.

 By Demonstration
TCR – L2

LM3 10.3
The setProperties method SHALL modify
the properties of a logical reader
according to Table 94.

 By Demonstration
TCR – L4

LM4 10.3
An ALE implementation SHALL provide
documentation of what “as soon as
possible” means

 By Demonstration,
TCR – L5
Provide required
documentation

LM5 10.3

The update, addReaders, setReaders,
removeReaders, and setProperties
methods SHALL NOT raise an
InUseException if no EC/CCSpecs are
active.

 By Demonstration
TCR – L2, L3, L4,
L5

LM6 10.3

The undefine method SHALL raise an
InUseException if there exist one or more
ECSpecs, CCSpecs, or other LRSpecs that
refer to it, whether ECSpecs or CCSpecs
are in the active state or not.

 By Demonstration
TCR – L5

LM7 10.3.1
The ImmutableReaderException SHALL
NOT be raised for a composite reader or
an API-defined base reader.

 By Demonstration
TCR – L4

LM8 10.3.1

If the Logical Reader API implementation
is associated with an implementation of
the Access Control API (Section 11), the
Logical Reader API implementation
SHALL raise the SecurityException
exception if the client was not granted
access rights to the called method as
specified in Section 11.

 By Demonstration
TCR – A3

LM9 10.3.1

An ALE implementation SHALL raise the
appropriate exception listed
In Table 96 when the corresponding
condition described in Table 95 occurs.

 By Demostration
TCR – L4, L5

LM10 10.3.2

An implementation of the Logical Reader
API SHALL implement all of the methods
defined in Section 10.3. In addition, the
following conformance requirements that
depend on the type of logical reader apply
as given in Table 97.

 By Demonstration
TCR – L1, L2, L3,
L4, L5

LM11 10.4
The ALE implementation SHALL
interpret the fields of an LRSpec as given
in Table 98.

 By Demonstration
TCR – L2, L4

LM12 10.4

The define or update methods of the
Logical Reader API SHALL raise a
ValidationException under any of the
following circumstances:
• isComposite is false and readers is

specified and non-empty.
• isComposite is false and the

implementation does 3889 not support
using the Logical Reader API to define
base readers.

• isComposite is false, the
implementation does support using the
Logical Reader API to define base
readers, but the LRSpec does not
conform to the vendor-specific rules
for such use.

• isComposite is true and any element of
readers is not a known Logical Reader
name.

• A property name in properties is not
recognized by the implementation.

• The value specified for a property is
not a legal value for that property.

 By Demonstration
TCR – L5, L6

LM13 10.5
The ALE implementation SHALL
interpret the fields of an LRProperty as
given in Table 99

 By Demonstration
TCR – L5

LM14 10.6

The application of this smoothing state
machine is that, at any point in time, a
Reader SHALL consider a Tag to be
within view if the Tag is in the Observed
state.

 By Demonstration
TCR – L4

LM15 10.6 If an ALE implementation supports
smoothing (that is, if an ALE

 By Demonstration
TCR – L4

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 58 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 59 of 150

implementation does not raise a
ValidationException when a client sets the
properties defined below), then it SHALL
apply the above rule when the reader is
used in an ECSpec,

LM16 10.6
An ALE implementation SHALL interpret
the four parameters of the smoothing state
machine as given in Table 101

 By Demonstration
TCR – L4

LM17 10.6

If all four smoothing properties are set to
null for a given logical reader, an
implementation SHALL NOT use
smoothing for that logical reader.

 By Demonstration
TCR – L4

LM18 10.6

The define, update, and setProperties
methods of the Logical Reader API
SHALL raise a ValidationException
under any of the following circumstances:
• If the value of any of the four

properties specified above is a non-
null string that is not parseable as a
non-negative decimal integer numeral.

• If the value of any of the four
properties specified above is non-null,
and the implementation does not
support Tag smoothing for the
specified logical reader.

• If both ObservedTimeThreshold and
ObservedCountThreshold are null, and
any of the other smoothing parameters
is non-null.

• If the implementation does not wish to
support the combination of the four
parameter values that would result
from the operation. An
implementation that supports
smoothing for the specified logical
reader SHALL NOT, however, raise a
ValidationException for the case
where all four parameters are set to
null.

 By Demonstration
TCR – L5

 448
449

451
452

12 Part II: XML and SOAP Binding Requirements 450
The ALE 1.1 defines XML and SOAP Bindings. The following tables outline the
specific requirements that must be tested as defined by the ALE 1.1 specification. Each

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 60 of 150

test requirement entry references the ALE 1.1 Specification and the test case requirement
(TCR) used to verify functionality as defined in sections 14 to 18 of this document.

453
454

456
457
458
459

12.1 XML and SOAP Binding Mandatory Requirements Matrix 455
The following table outlines the mandatory requirements for the XML and SOAP
bindings as defined by the ALE 1.1 Specification. All mandatory XML and SOAP
Binding requirements have a requirement number of XMx where x is a decimal number.

Req.
No.

Protoco
l
Sub-
Clause

Requirements
(Requirements, Command, …)

Applies
to
(ref)

How Verified
(by Demonstration or by
Design)

XM1* 3.2.1
Part 2

Vendor-specific attributes may be added
to any XSD type corresponding to a
UML class in which <<extension
point>> occurs. Vendor-specific
attributes
SHALL NOT be in the EPCglobal ALE
namespace (urn:epcglobal:ale:xsd:1).

 By Demonstration
TCR-R21, W16,
T6, A5, L7

XM2* 3.2.1
Part 2

Vendor-specific attributes SHALL be in
a namespace whose namespace URI has
the vendor as the owning authority.

 By Design
TCR-R21, W16,
T6, A5, L7

XM3* 3.2.1
Part 2

Declarations of vendor-specific attributes
SHALL specify use="optional".

 By Demonstration
TCR-R21, W16,
T6, A5, L7

XM4* 3.2.1
Part 2

Vendor-specific elements SHALL NOT
be in the EPCglobal ALE namespace
(urn:epcglobal:ale:xsd:1)

 By Demonstration
TCR-R21, W16,
T6, A5, L7

XM5* 3.2.1
Part 2

Vendor-specific elements SHALL be in a
namespace whose namespace URI has
the vendor as the owning authority

 By Design
TCR-R21, W16,
T6, A5, L7

XM6* 3.2.1
Part 2

<xsd:group
name="VendorExtension">
 <xsd:sequence>
 <!--
 Definitions or references
to vendor elements
go here. Each SHALL specify
minOccurs="0".
 -->

 By Demonstration
TCR-R21, W16,
T6, A5, L7

XM7* 3.2.1
Part 2

Standard attributes may be added to any
XSD type corresponding to a UML class
in which <<extension point>>
occurs. Standard attributes SHALL NOT
be in any namespace, and SHALL NOT
conflict with any existing standard
attribute name.

 N/A - This
requirement only
applies to future
version of the
standard

XM8* 3.2.2 A vendor implementation MAY add By Demonstration

Part 2 additional methods to an ALE API,
provided that the name of a vendor
extension method SHALL NOT conflict
with existing methods.

TCR-R21, W16,
T6, A5, L7

XM9* 3.2.3
Part 2

Vendor extension values SHALL take
the form of absolute URIs [URI], where
the URI has the vendor as the owning
authority.

 By Demonstration
TCR-R21, W16,
T6, A5, L7

XM10 3.5
Part 2

<xsd:complexType
name="ECReportGroup">
…
</xsd:sequence>
<!-- The groupName attribute SHALL be
omitted to indicate the default group. -->
<xsd:attribute name="groupName"
type="xsd:string" use="optional"/>
<xsd:anyAttribute
processContents="lax"/>
</xsd:complexType>

 By Demostration
TCR – R5

XM11 3.5
Part 2

<xsd:complexType
name="ECReportGroupListMember">
<xsd:sequence>
<!-- Each of the following four elements
SHALL be omitted if null. -->
<xsd:element name="epc"
type="epcglobal:EPC" minOccurs="0"/>
<xsd:element name="tag"
type="epcglobal:EPC" minOccurs="0"/>
<xsd:element name="rawHex"
type="epcglobal:EPC" minOccurs="0"/>
<xsd:element name="rawDecimal"
type="epcglobal:EPC" minOccurs="0"/>

 By Demonstration
TCR – R5

XM12* 5
Part 2

If an implementation provides an
additional binding of the callback
interface, it SHALL use a URI scheme
that does not conflict with any of the
standardized bindings.

 By Demonstration
TCR-R21, W16,
T6, A5, L7

XM13 5
Part 2

All notification URIs recognized by
bindings as legal, whether the binding is
standardized as a part of this
specification or not, SHALL conform to
the general syntax for URIs as defined in
[RFC2396].

 By Demonstration
TCR – R4

XM14 5.1
Part 2

The interpretation by the ALE
implementation of the response code
returned by the callback receiver is

 By Demonstration
TCR – R4

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 61 of 150

outside the scope of this specification;
however, all implementations SHALL
interpret a response code 2xx (that is, any
response code between 200 and 299,
inclusive) as a normal response, not
indicative of any error.

XM15 5.2
Part 2

The ALE implementation delivers an
event cycle or command cycle report by
opening a new TCP connection to the
specified host and port, writing to the
connection the ECReports instance or
CCReports instance encoded in XML
according to the
schema specified in Section 3.5 or
Section 3.6, respectively, and then
closing the connection. The ALE
implementation SHALL NOT require a
reply or acknowledgement.

 By Demonstration
TCR – W4

XM16 5.4
Part 2

The ALE implementation SHALL
deliver event cycle or command cycle
reports by sending an HTTP POST
request to the callback receiver
designated in the URI, where
remainder-of-URL is included in
the HTTP request-line (as defined
in [RFC2616]), and where the payload is
the ECReports or CCReports
instance encoded in XML according to
the schema specified in Section 0 or
Section 3.6, respectively.

 By Demonstration
TCR – W4

XM17 5.4
Part 2

For these bindings, HTTP SHALL be
used over TLS as defined in [RFC2818].
TLS for this purpose SHALL be
implemented as defined in [RFC2246]
except that the mandatory cipher suite is
TLS_RSA_WITH_AES_128_CBC_SH
A, as defined in [RFC3268] with
CompressionMethod.null.

 By Demonstrations
TCR – W4

XM18 5.4
Part 2

The interpretation by the ALE
implementation of the response code
returned by the callback receiver is
outside the scope of this specification;
however, all implementations
SHALL interpret a response code 2xx
(that is, any response code between 200
and 299, inclusive) as a normal response,

 By Demonstration
TCR – W4

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 62 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 63 of 150

not indicative of any error.
 460

461

463
464
465
466
467

469
470
471
472
473
474
475
476
477
478

480
481
482
483

485
486
487
488
489
490
491
492

494
495
496
497

13 Notes on Test Case Requirements 462
An ALE Conformance Certification Program will test an Implementation Under Test
(IUT) according to predefined test case requirements that have been designed to isolate
and test specific features and functions of the ALE 1.1 Specification. While these test
case requirements are not exhaustive, they test all the mandatory features that are
required by the specification.

13.1 Nomenclature 468
The following nomenclature is used for assigning IDs to the ALE1.1 Conformance Test
Cases.

 ALE1.1 Reading API Tests: TCR-RX
 ALE1.1 Writing API Tests: TCR-WX
 ALE1.1 Tag Memory API Tests: TCR-TX
 ALE1.1 Access Control API Tests: TCR-AX
 ALE1.1 Logical Reader API Tests: TCR-LX

Where TCR stands for “Test Case Requirement” and X = 1, 2, 3…

13.2 General Requirments 479
There is a requirements matrix for ALE 1.1 general requirements. These are requirments
that are defined outside of the API sections of the specification. The general
requirements apply to one or more of the APIs specified and will be tested as part of the
API test cases.

13.3 Pre-Condidtions and Post-Conditions 484
Each test has zero or more pre-test conditions defined. In most pre-test conditions the
class variables relevant for the corresponding APIs are provided. However, not all
elements of all classes are present in the pre-test conditions. Such variables should be
considered as either Empty / Null or they have no impact for the corresponding test.

The post-test conditions are omitted in many cases for simplicity. However, care should
be taken to remove any undeleted Specs (ECSpec / CCSpec / TMSpec / LRSpec /
ACSpec) at the end of the test during the preparation of the testscripts.

13.4 XML Instance Document Validation 493
For all test case requirments where and XML instance document (e.g. ECReports,
CCReports) is returned by the implementation under test, it should be validated against a
modified standard ALE 1.1 XSD for that document. A modified ALE 1.1 XSD should be
used in which the wildcard has been removed from all inner <extension> elements. This

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 64 of 150

would ensure that vendors aren’t adding extensions into areas that are reserved for new
features in future ALE versions.

498
499
500
501
502
503

505
506

508

The vendor XSDs should also be examined to ensure extensions, elements and attributes
were not added in places not allowed by the specification. This will require that a vendor
make their XSDs available to the certification test lab for inspection.

14 Reading API Test Case Requirements 504
The ALE 1.1 Reading API Test Case Requirements are provided in the following
subsections

14.1 TCR-R1 – Get Version, Reading API 507

Get Version, Reading API
TPId: TCR-R1
Requirement Purpose: This Test Case confirms the proper functions of the ALE methods of the Reading API
that return the ALE standard version and the vendor version for the ALE implementation under test. The return
of correct version numbers also confirms the correct implementation is being tested.
Requirements Tested: GM1, GM2, GM3, GM4, GM5, RM1
Pre-test conditions:

• None
Step Step description Expected results

1
Invoke the getStandardVersion method of the
Reading API

• Confirm the string “1.1” is returned.
• Confirm the result returned by this method only

pertain to the Reading API.

2

Invoke the getVendorVersion method of the
Reading API

• Confirm that either an empty string or a string
conforming to a proper URI is returned.

• Confirm the vendor is the owning authority of the
URI if the returned string is not empty (by Design)

• Confirm the result returned by this method only
pertain to the API to the Reading API.

 509

511
14.2 TCR-R2 – Defining, Un-defining and Retrieving ECSpecs, 510

Reading API
Defining, Un-defining and Retrieving ECSpecs, Reading API

TPId: TCR-R2
Requirement Purpose: This Test Case confirms that a valid ECSpec can be defined and undefined. Further the
defining and un-defining of the ECSpec can be verified with ALE API methods getECSpec and getECSpecNames.
Requirements Tested: GM1, GM6, GM7, GM12, RM1, RM2 RM5

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 65 of 150

Pre-test conditions:
• No ECSpecs are defined.
• Ensure all specName parameters accept as a name any non-empty string of Unicode characters that does not

include Pattern_White_Space or Pattern_Syntax characters (see GM6)
• The Writing API must be supported for Step 7. Otherwise, Step 7 is optional.

Step Step description Expected results

1
Invoke the define method with a valid ECSpec
without extensions

The ALE implementation contains the ECSpec definition
supplied in the define method. Steps 2 and 3 confirm the
defining of the ECSpec.

2 Verify the ECSpec was defined by invoking
the getECSpecNames method

Verify that the name returned in the list is equivalent to the
ECSpec just defined

3 Invoke getECSpec using the name of the
defined ECSpec.

Verify that the ECSpec returned is the same as the one
defined

4 Invoke undefine to remove the ECSpec that
was defined.

The ALE implementation should no longer have the ECSpec
defined. Confirmed by step 5.

5 Verify that the ECSpec is undefined by
invoking the getECSpecNames method.

Verify that the list returned is empty.

6

Repeat steps 1 through 5 for a valid ECSpec
with extensions.

Note that when Step 3 is repeated, the ECSpec returned by
getECSpec may not necessarily include any of the extension
elements provided in Step 1, if those extensions are not
understood by the implementation.

7

Invoke the Writing API define method with a
CCSpec and specName = “foo”. Invoke the
Reading API define method with an ECSpec
and specName = “foo”. (optional, unless the
Writing API is also supported)

Verify that the ALE implementation does accept both the
CCSpec and the ECSpec and does not raise a
DuplicateNameException.

 512

14.3 TCR-R3 – Exceptions, Reading API 513
Exceptions, Reading API

TPId: TCR-R3
Requirement Purpose: This Test Case confirms that the ALE implementation will raise all exceptions as
defined in the ALE specification. This covers exceptions raised due to incorrect parameters passed in ALE
API methods and exceptions raised due to missing or invalid parameters in an ECSpec.
Requirements Tested: GM1, GM6, GM8, GM32, GM38, GM42, GM46, GM50, GM55, GM60, RM62,
GM64, GM83, RM1, RM4, RM5, RM7, R12, RM15, RM16, RM20, RM24, RM28, RM31, RM33, RM42,
RM46
Pre-test conditions:

• No ECSpecs are defined
• Note: The ECSpecs used in this Test Case Requirement steps should be valid except for the conditions

specified in step being performed.
Step Step description Expected results

1 Invoke the getECSpec with an unknown spec
name.

Verify that the ALE implementation raises a
NoSuchNameException.

2 Invoke the poll method using an unknown
name for the ECSpec string.

Verify that the ALE implementation raises a
NoSuchNameException is raised.

3 Invoke the subscribe method with an unknown
ECSpec name

Verify that the ALE implementation raises a
NoSuchNameException.

4

Invoke the unsubscribe method with a defined
ECSpec name and a well-formed notification
URI. The notification URI should not belong
to a user who is subscribed

Verify that the ALE implementation raises a
NoSuchSubscriberException.

5

Invoke the subscribe method using the name
of a valid and defined ECSpec and a well
formed notification URI that is not supported
by the implementation under test

Verify that the ALE Implementation raises an
InvalidURIException

6 Invoke the unsubscribe method with an
unknown ECSpec name

Verify that the ALE implementation raises a
NoSuchNameException.

7 Invoke the getSubscribers method with an
unknown ECSpec name

Verify that the ALE implementation raises a
NoSuchNameException.

8 Invoke the undefine method with an unknown
ECSpec name.

Verify that the ALE implementation raises a
NoSuchNameException.

9 Invoke the subscribe method with an un-
conforming URI

Verify that the ALE Implementation raises an
InvalidURIException

10 Invoke the unsubscribe method with an un-
conforming URI

Verify that the ALE Implementation raises an
InvalidURIException or NoSuchSubscriberException

11 Invoke the define method with a valid ECSpec The ALE implementation holds the ECSpec definition

12 Verify the ECSpec was defined by invoking a
getECSpecNames method

Verify that the name returned is that of the ECSpec just
defined

13
Invoke the define method again with a valid
ECSpec and the name of the ECSpec defined
in step 11.

Verify that the ALE implementation raises a
DuplicateNameException

14
The same subscriber should subscribe to the
an ECSpec to which the subscriber is already
subscribed.

Verify that the ALE implementation raises a
DuplicateSubscriptionException

15

Invoke the immediate method with an ECSpec
that has a readers parameter that is null,
omitted, is an empty list, or contains names
that are unknown to the ALE implementation.

Verify that the ALE implementation raises an
ECSpecValidationException

16
Invoke the define method with an ECSpec that
has a boundaries parameter that is null or
omitted.

Verify that the ALE implementation raises an
ECSpecValidationException

17

Invoke the immediate method with an ECSpec
that has a reportSpecs parameter that is null,
omitted, is an empty list or contains two
ECReportSpec instances with the same
reportName.

Verify that the ALE implementation raises an
ECSpecValidationException

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 66 of 150

18

Invoke the define method with an ECSpec
whose ECBoundarySpec contains a duration,
repeatPeriod, or stableSetInterval parameter
that is negative

Verify that the ALE implementation raises an
ECSpecValidationException

19
Invoke the define method with an ECSpec
whose ECBoundarySpec has no termination
condition specified.

Verify that the ALE implementation raises an
ECSpecValidationException

20

Invoke the immediate method with an ECSpec
whose ECBoundarySpec has a startTrigger or
a stopTrigger which has a value that does not
conform to the URI syntax.

Verify that the ALE implementation raises an
ECSpecValidationException

21

Invoke the define method with an ECSpec
whose ECReportSpecs list contains an
ECReportSpec whose filter parameter
contains a URI that does not conform to the
EPC pattern syntax.

Verify that the ALE implementation raises an
ECSpecValidationException

22

Invoke the define method with an ECSpec
whose ECReportSpecs list contains a
ECReportSpec whose group parameter does
not conform to the syntax for grouping
patterns in section 6.2.1.3 or contains two
grouping patterns that are non-disjoint as
defined in section 6.2.1.3.

Verify that the ALE implementation raises an
ECSpecValidationException

23

Invoke the immediate method with an ECSpec
whose ECReportSpecs list contains an
ECReportSpec whose output parameter’s
ECReportOutputSpec Boolean values for all
tag formats (includeEPC, includeTag,
includeRawHex, includeRawDecimal and
includeCount) are set to false.

Verify that the ALE implementation raises an
ECSpecValidationException

24
Invoke the define method with an ECSpec
Whose primaryKeyFields contain an
Unknown fieldname.

Verify that the ALE implementation raises an
ECSpecValidationException

25
Invoke the define method with an ECSpec
Whose statProfileNames contain an Unknown
element

Verify that the ALE implementation raises an
ECSpecValidationException

26
Invoke the define method with an ECSpec
Whose ECFilterSpec has filterList with empty
patList

Verify that the ALE implementation raises an
ECSpecValidationException

27

Invoke the define method with an ECSpec
Whose ECFilterSpec has filterList with
patList that does not conform syntax rules for
patterns

Verify that the ALE implementation raises an
ECSpecValidationException

28
Invoke the define method with an ECSpec
Whose ECFilterSpec has filterList with
fieldspec with unknown datatype and format

Verify that the ALE implementation raises an
ECSpecValidationException

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 67 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 68 of 150

29
Invoke the define method with an ECSpec
Whose ECgroupSpec has fieldspec with
unknown datatype and format

Verify that the ALE implementation raises an
ECSpecValidationException

30

Invoke the define method with an ECSpec
Whose ECgroupSpec has patternList that does
not conform to the syntax rules for grouping
patterns

Verify that the ALE implementation raises an
ECSpecValidationException

31
Invoke the define method with an ECSpec
Whose ECgroupSpec has patternList of non
disjoint pattern

Verify that the ALE implementation raises an
ECSpecValidationException

32

Invoke the immediate method with an ECSpec
whose ECBoundarySpec has a
startTriggerList (containing a startTrigger) or
a stopTriggerList (containing a stopTrigger).
The elements of the startTriggerList and
stopTriggerList does not conform to the URI
syntax.

Verify that the ALE implementation raises an
ECSpecValidationException

33

Invoke the define method with a specName
that uses a diacritical letter (e.g. embarcadère).
Then invoke the undefine method with a
specName that looks equivalent but does not
contain the diacritical mark (e.g. embarcadere)

Verify that the ALE implementation raises a
NoSuchNameException for the undefined method.

34

Invoke the define method with an ECSpec
with a primaryKeyFields whose
implementation does not support the
primaryKeyFields value with the specificed
logical readers.

Verify that the ALE implementation raises an
ECSpecValidationException

35
Invoke the define method with a fieldspec that
specifies a fieldname of epc and specifies a
datatype that is not an epc.

Verify that the ALE implementation raises an
ECSpecValidationException

36

Invoke the define method with a fieldspec that
specifies a fieldname beginning with an @
character but not conforming to any syntax
specified in Section 6.1.9 of the specification.

Verify that the ALE implementation raises an
ECSpecValidationException

 514

14.4 TCR-R4 – Subscribe and Unsubscribe, Reading API 515
Subscribe and Unsubscribe, Reading API

TPId: TCR-R4
Requirement Purpose: This Test Case confirms that clients can subscribe and unsubscribe to ECSpecs that
have been correctly defined and the notification URIs used conform to the ALE standard. Multiple
subscriptions to the same ECSpec are tested.
Requirements Tested: GM1, GM13, GM14, GM15, GM16, GM18, RM1, RM64, XM13, XM14

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 69 of 150

Pre-test conditions:
• A valid ECSpec has been defined.
• Note: Implementation of only one notification API type is required: HTTP, HTTPS or TCP. All may

be certified.
Step Step description Expected results

1
The first subscriber invokes the subscribe
method to subscribe to the ECSpec
providing its HTTP Notification URI

A user is subscribed to the ECSpec in the subscribe
invocation and the associated event cycle is activated.
Step 2 provides verification.

2

Invoke the getSubscribers method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 should be in the list.
Verify that the correct ECReports are being received at
the notification URI per the boundary condition
specified in the ECSpec

3

A second subscriber invokes the subscribe
method to subscribe to the same ECSpec as
step 1 therefore providing its HTTP
Notification URI.

A second user is subscribed to the ECSpec in the
subscribe invocation. Step 4 provides verification.

4
Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 and step 3 should be in the
list.

5
The first subscriber un-subscribes by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The first user is unsubscribed.

6
Invoke the getSubscribers method to verify
that the unsubscribe method succeeded and
the first subscriber is no longer subscribed.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 should no longer be in the
list.

7 The second subscriber un-subscribes by
invoking the unsubscribe method.

The second user is unsubscribed

8

Invoke the getSubscribers method to verify
that the unsubscribe method succeeded and
the second subscriber is no longer
subscribed.

getSubscriber returns the list of notification URIs. The
notification URI from step 3 should no longer be in the
list.

9 Repeat steps 1 through 8 replacing the HTTP Notification URIs with a TCP Notification URIs
10 Repeat steps 1 through 8 replacing the HTTP Notification URIs with a File Notification URIs
11 Repeat steps 1 through 8 replacing the HTTP Notification URIs with a HTTPS Notification URIs

 516

14.5 TCR-R5 – Poll, Reading API 517
Poll, Reading API

TPId: TCR-R5

Requirement Purpose: This Test Case confirms that the invocation of poll method can provide a valid
ECSpecName to an ALE implementation and return an ECReports consistent with the parameters set in the
ECSpec and within the boundary conditions.
Requirements Tested: GM1, GM9, GM13, GM14, GM15, GM16, GM18, RM1, RM5, RM10, RM11, RM13,
RM14, RM19, RM21, RM23, RM25, RM37, RM47, RM48, RM49, RM50, RM51, RM52, RM53, RM56,
RM57, RM58, RM63, XM10, XM11
Pre-test conditions:

• Two Valid ECSpecs have been defined: A and B
• Spec A: A valid ECSpec has been defined with a repeatPeriod of M seconds, a duration of N seconds

where M > N
• Spec B: A valid ECSpec has been defined with a repeatPeriod of M seconds, a duration of N seconds

where M < N as shown below:

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader startTrigger Null
stopTrigger Null startTriggerList Null stopTriggerList Null
duration N Sec stableSetInterval 0 repeatPeriod M sec
reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC Yes includeTag No
reportIfEmpty False reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No filterList No
statProfileNames No reportSpecs Note 1
Note 1: The reportsSpec should have at least one name in its list. That name string should be equal to
the name string for the ECSpec (tests requirement GM9)

Step Step description Expected results

1 Place a tag set in the reader field.

2
Invoke the poll using the name of spec A (M > N) After N seconds, an ECReports that conforms

to the ALE XSD should be returned listing
all the tags in the reader field.

3 Remove all the tags from the reader field.

4

Invoke the poll using the name of spec A (M > N) After N seconds, an ECReports that conforms
to the ALE XSD and that contains zero
ECReport instances should be returned even
though reportIfEmpty is false.

5 Place a tag set in the reader field.

6
Invoke the poll using the name of spec B (M < N) After N seconds, an ECReports that conforms

to the ALE XSD should be returned listing
all the tags in the reader field.

7 Remove all the tags from the reader field.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 70 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 71 of 150

8

Invoke the poll using the name of spec B (M < N) After N seconds, an ECReports that conforms
to the ALE XSD and that contains zero
ECReport instances should be returned even
though reportIfEmpty is false.

 518

14.6 TCR-R6 – Immediate and ECStatProfileName, Reading API 519
Immediate, Reading API

TPId: TCR-R6

Requirement Purpose: This Test Case confirms that the invocation of the immediate method can provide a
valid ECSpec to an ALE implementation and return ECReports consistent with the parameters set in the
ECSpec and within the boundary conditions. The test also verifies the inclusion of an ECSpec in and
ECReports. This test also optionally verifies ECStatProfilename feature.
Requirements Tested: GM1, GM21, GM22, GM23, GM24, GM25, RM1, RM5, RM6, RM10, RM11, RM19,
RM21, RM23, RM25, RM39, RM41, RM43, RM45, RM47, RM48, RM49, RM50, RM51, RM52, RM53,
RM56, RM57, RM58, RM59, RM60, RM61, RM62
Pre-test conditions:

• None
• ECSpec for the test:

ECSpec

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger,

startTriggerList
Null

duration 0 stableSetInterval N sec stopTrigger,
stopTriggerList

Null

reportSet ADDITIONS primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC No includeTag Yes
reportIfEmpty False reportOnlyOnChange False includeSpecInReports True
includeRawHex Yes includeRawDecimal No groupSpec No
includePatterns No excludePatterns No filterList No
statProfileNames No

Step Step description Expected results

1
Place a tag set in the reader field. Keeps the tags in the
reader field for a time greater than the N second
stableSetInterval once the immediate method is issued.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 72 of 150

2

Invoke the immediate method using a valid ECSpec as
specified in the pre-test conditions.

Ensure no ECReports is returned prior to N
seconds. Ensure an ECReports that conforms
to the ALE XSD is returned immediately
after N seconds has past. Confirm the
ECReports contains tag EPCs in Tag and
RawHex formats and the ECSpec appears in
the ECReports.

3

(optional) Repeat steps 1 and 2 with statProfileNames
containing “TagTimeStamps”.

Result is same as in step 2 plus the time
ECTagTimestampStat reported for each tag.
The stat timestamps should be compared with
the date field of the ECReports to see that the
times are synchronized.

 520

523

14.7 TCR-R7 – Using startTrigger, startTriggersList, stopTrigger 521
and stopTriggersList, Reading API 522

Using startTrigger, startTriggersList, stopTrigger and stopTriggersList, Reading API
TPId: TCR-R7
Requirement Purpose: This Test Case confirms the following features of the ECSpec: startTrigger,
startTriggerList, stopTrigger and stopTriggerList.
Requirements Tested: GM1, RM6, RM10, RM11, RM19, RM21, RM23, RM25, RM26, RM39, RM40,
RM41, RM43, RM47, RM48, RM49, RM50, RM51, RM52, RM53, RM56, RM57, RM58, RM64
Pre-test conditions:

• A valid ECSpec has been defined as shown.

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod 0 startTrigger Yes
duration 0 stableSetInterval 0 stopTrigger Yes
reportSet CURRENT whenDataAvailable False startTriggerList Yes
includeCount Yes includeEPC No stopTriggerList Yes
reportIfEmpty False reportOnlyOnChange False primaryKeyFields Null
includeRawHex No includeRawDecimal Yes includeTag Yes
includePatterns No excludePatterns No includeSpecInReports False
filterList No statProfileNames No groupSpec No

• There are no users subscribed to the ECSpec.
• StartTriggerList contains startTriggers URI1 and URI2. StopTriggerList contains stopTriggers URI3

and URI4.
• The startTrigger is URI5 and the stopTrigger is URI6.

Step Step description Expected results
1 Invoke the poll method to activate the ECSpec None

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 73 of 150

2 Move a set of tags into the reader field and trip
the start trigger URI1.

The Event Cycle should begin

3

Trip the stop trigger URI3 after a sufficient time
has passed for all the tags to have been read and
reported to the ALE implementation.

An ECReports that conforms to the ALE XSD should
be retuned by the poll command issued in step 1. The
ECReports should contain an ECReport that contains
the tag EPCs of those tags place in the reader field.
The ECReports should also contain startTrigger URI1
as initiationTrigger and stopTrigger URI3 as
terminationTrigger.

4 Invoke the poll method to activate the ECSpec None

5 Move a set of tags into the reader field and trip
the start trigger URI2.

The Event Cycle should begin

6

Trip the stop trigger URI4 after a sufficient time
has passed for all the tags to have been read and
reported to the ALE implementation.

An ECReports that conforms to the ALE XSD should
be retuned by the poll command issued in step 1. The
ECReports should contain an ECReport that contains
the tag EPCs of those tags place in the reader field.
The ECReports should also contain startTrigger URI2
as initiationTrigger and stopTrigger URI4 as
terminationTrigger.

7 Invoke the poll method to activate the ECSpec None

8 Move a set of tags into the reader field and trip
the start trigger URI5.

The Event Cycle should begin

9

Trip the stop trigger URI6 after a sufficient time
has passed for all the tags to have been read and
reported to the ALE implementation.

An ECReports that conforms to the ALE XSD should
be retuned by the poll command issued in step 1. The
ECReports should contain an ECReport that contains
the tag EPCs of those tags place in the reader field.
The ECReports should also contain startTrigger URI5
as initiationTrigger and stopTrigger URI6 as
terminationTrigger.

 524
525

527

14.8 TCR-R8 – Exclude Filtering, Reading API 526

Exclude Filtering, Reading API
TPId: TCR-R8
Requirement Purpose: This Test Case Requirement confirms the following features of the ECSpec: include
count, include current, includeTag format, includeRawDecimal format, reportIfEmpty=false, exclude pattern
filtering and one logical reader in the reader list. It also tests for support of the built-in fieldnames.
Requirements Tested: GM1, GM26, GM27, GM28, GM29, GM33, GM34, GM35, GM36, GM37, GM38,
GM39, GM40, GM42, GM43, GM44, GM45, GM46, GM47. GM48, GM49, GM50, GM51, GM52, GM54,
GM55, GM56, GM57, GM58, GM59, GM60, GM67, GM69, GM71, GM82, GM84, GM85, GM86, GM87,
GM88, GM89, GM90, GM91, GM93, GM94, GM96, GM97, GM98, GM99, GM100, GM101, GM102,
GM103, GM104, GM105, GM106, GM107, GM108, GM109, GM110, GM111, GM112, RM1, RM19,
RM21, RM23, RM25, RM39, RM40, RM41, RM43

Pre-test conditions:
• A valid ECSpec has been defined as shown. The repeatPeriod = the duration (M = N)

ECSpec

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger,

startTriggerList
omitted

duration N sec stableSetInterval 0 stopTrigger,
stopTriggerList

omitted

reportSet CURRENT whenDataAvailable False
includeCount Yes includeEPC No includeTag Yes
reportIfEmpty False reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal Yes groupSpec No
includePatterns No excludePatterns No filterList Yes
statProfileNames No

ECFilterListMember

Parameter Value Parameter Value Parameter Value
includeExclude Exclude Fieldspec ECFieldspec1/ ECFieldspec2/

ECFieldspec3/ ECFieldspec4
patList valid

pattern list

ECFieldSpec1
Parameter Value Parameter Value Parameter Value
Fieldname epc Datatype epc Format epc-tag

ECFieldSpec2

Parameter Value Parameter Value Parameter Value
Fieldname killPwd Datatype omitted Format omitted

ECFieldSpec3

Parameter Value Parameter Value Parameter Value
Fieldname accessPwd Datatype omitted Format omitted

ECFieldSpec4
Parameter Value Parameter Value Parameter Value
Fieldname afi Datatype omitted Format omitted

ECFieldSpec5
Parameter Value Parameter Value Parameter Value
Fieldname nsi Datatype omitted Format omitted

• There are no users subscribed to the ECSpec.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 74 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 75 of 150

Step Step description Expected results

1

Invoke the poll method to activate the ECSpec
(using ECFieldSpec1) and begin the event
cycle. Ensure that a Gen2 tag set is in the reader
field.

The event cycle should have started.

2

Verify that after time M, when the repeatPeriod
expires, an ECReports is returned by the poll.

An ECReports that conforms to the ALE XSD should
be returned by the poll in Step 1. It should include
those tags from the tag set that did not match the
exclude filter. The tag identities should be provided in
Tag and Raw Decimal Format and should be
consistent with the EPCs on the tags. A count of the
tags should be in the report.

3

Invoke the poll method again but only have tags
in the tag set presented to the reader field where
all Gen2 tags that will be filtered out by exclude
filter.

After the repeatPeriod expires after time M, an
ECReports that conforms to the ALE XSD should be
returned. It should include an empty ECReports.

4 Repeat steps 1-3 with ECFieldSpec2 Verify that the tags with the same killpwd value are
excluded from the ECReport.

5 Repeat steps 1-3 with ECFieldSpec3 Verify that the tags with the same accesspwd value are
excluded from the ECReport.

6 Repeat steps 1-3 with ECFieldSpec4 Verify that the tags with the same afi value are
excluded from the ECReport.

7 Repeat steps 1-3 with ECFieldSpec5 Verify that the tags with the same nsi value are
excluded from the ECReport.

8
Repeat steps 1-3 with ECFieldSpec2 with tags
or readers that don’t support killPwd

Verify that the tags with the same killpwd value are
excluded from the ECReport. The “operation not
possible” should be raised.

9
Repeat steps 1-3 with ECFieldSpec3 with tags
or readers that don’t support accessPwd

Verify that the tags with the same accesspwd value are
excluded from the ECReport. The “operation not
possible” should be raised.

10
Repeat steps 1-3 with ECFieldSpec4 with tags
or readers that don’t support afi.

Verify that the tags with the same afi value are
excluded from the ECReport. The “operation not
possible” should be raised.

11
Repeat steps 1-3 with ECFieldSpec5 with tags
or readers that don’t support nsi.

Verify that the tags with the same nsi value are
excluded from the ECReport. The “operation not
possible” should be raised.

 528

14.9 TCR-R9 – Using whenDataAvailable, Reading API 529
Using whenDataAvailable, Reading API

TPId: TCR-R9

Requirement Purpose: This Test Case confirms the correct operation of the feature whenDataAvailable of the
ECSpec. Also, in this test includePatterns, excludePattern and filterList are verified.
Requirements Tested: GM1, RM1, RM10, RM11, RM19, RM21, RM25, RM26, RM64
Pre-test conditions:

• Two Valid ECSpecs have been defined: A and B
• Spec A: A valid ECSpec has been defined with a repeatPeriod of M seconds, a duration of N seconds

where M > N and whenDataAvailable = true
• Spec B: A valid ECSpec has been defined with a repeatPeriod of M seconds, a duration of N seconds

where M > N and whenDataAvailable = false as shown below:

ECSpec1
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger Null
duration N Sec stableSetInterval 0 sec stopTrigger Null
startTriggerList Null stopTriggerList Null reportSet CURRENT
includeCount No includeEPC Yes includeTag No
reportIfEmpty True reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns Yes excludePatterns No filterList No
statProfileNames No primaryKeyFields Null

ECSpec2 (Same a EPCSpec 1 except for values shown)

Parameter Value Parameter Value Parameter Value
includePatterns No excludePatterns Yes filterList No

ECSpec3 (Same a EPCSpec 1 except for values shown)

Parameter Value Parameter Value Parameter Value
includePatterns No excludePatterns No filterList* Yes

 *The filterList should contain two filterList members: an include and an exclude member.

• There are no users subscribed to the ECSpec.
• A valid notification URI exists that can accept ECReports from the ALE implementation.

Step Step description Expected results

1
Invoke the subscribe method to activate the ECSpec1
A and begin the event cycle.

Subscribe to ECSpec1 A is successful.

2
Put a tag that does not satisfy includefilter condition
within time < N sec.

Verify that an empty ECReports is sent to the
notification URI after the expiry of N seconds
(when the duration timeout occurs).

3

Put a tag that satisfies includefilter condition within
time < N sec during the next event cycle.

Verify that immediately an ECReports is sent to
the notification URI. The ECReports should
conform to a report output per the XSD in the
ALE specification and contain the new added
tag.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 76 of 150

4

Put a tag tag that satisfies include filter condition
before the expiration of the repeat period M (Note: N
< M).

Verify that no ECReports is sent after the expiry
of N seconds.

5 Unsubscribe form ECSpec1 A Unsubscribe is successful and ECSpec1 A
should not longer be active

6
Invoke the subscribe method to activate the ECSpec1
B and begin the event cycle.

Subscribe to ECSpec1B is successful.

7
Put a tag that does not satisfy includefilter condition
within time < N sec.

Verify that an empty ECReports is sent to the
notification URI after the expiry of N seconds
(when the duration timeout occurs).

8

Put a tag that satisfy includefilter condition within
time < N sec during the next event cycle.

Verify that an ECReports is sent to the
notification URI only after the expiry of N
seconds (when the duration timeout occurs). The
ECReports should conform to a report output per
the XSD in the ALE specification and contain
the new added tag.

9 Unsubscribe from ECSpec1 B Unsubscribe is successful and ECSpec1 B should
no longer be active

10
Invoke the subscribe method to activate the ECSpec2
A and begin the event cycle.

Subscribe ECSpec2 A is successful.

11
Put a tag that satisfies excludefilter condition within
time < N sec.

Verify that an empty ECReports is sent to the
notification URI after the expiry of N seconds
(when the duration timeout occurs).

12

Put a tag that does not satisfy excludefilter condition
within time < N sec during the next event cycle.

Verify that immediately an ECReports is sent to
the notification URI. The ECReports should
conform to a report output per the XSD in the
ALE specification and contain the new added
tag.

13
Put a tag that satisfies excludefilter condition before
the expiry of duration, i.e., within M sec of the start of
the event cycle in step 3.

Verify that no ECReports is sent after the expiry
of N seconds.

14 Unsubscribe from ECSpec2 A Unsubscribe is successful and ECSpec2 A
should no longer be active

15
Invoke the subscribe method to activate the ECSpec2
B and begin the event cycle.

Subscribe ECSpec2 B is successful.

16
Put a tag that satisfy excludefilter condition within
time < N sec during the next event cycle.

Verify that an empty ECReports is sent to the
notification URI after the expiry of N seconds
(when the duration timeout occurs).

17

Put a tag that does not satisfy excludefilter condition
within time < N sec.

Verify that an ECReports is sent to the
notification URI only after the expiry of N
seconds (when the duration timeout occurs). The
ECReports should conform to a report output per
the XSD in the ALE specification and contain
the new added tag.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 77 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 78 of 150

18 Unsubscribe from ECSpec2 B Unsubscribe is successful and ECSpec2 B should
no longer be active

19 Invoke the subscribe method to activate the ECSpec3
A and begin the event cycle.

Subscribe ECSpec3 A is successful.

20
Put tags that satisfies filter list include and exclude
conditions within time < N sec.

Verify that an ECReports only containg the tags
that meet the include conditions is sent to the
notification immediately (i.e. whenDataAvailble)

21

Put tags that do not satisfy exclude and include
conditions within time < N sec during the next event
cycle. (Note: Tags from step 20 should be removed
before this step is executed.)

NOTE: If a tag sarisfies both filter list include and
exlude conditions, it must not be reported.

Verify that immediately an ECReports is sent to
the notification. The ECReports should conform
to a report output per the XSD in the ALE
specification and contain the new added tags that
did not meet the exclude condition.

22 Unsubscribe from ECSpec3 A Unsubscribe is successful and ECSpec3 A
should no longer be active

14.10 TCR-R10 – Using primaryKeyFields, Reading API 530
 531

Using primaryKeyFields, Reading API
TPId: TCR-R10

Requirement Purpose: This Test Case confirms the correct operation of the feature primaryKeyFields of the
ECSpec.
Requirements Tested: GM1, RM1, RM8, RM19, RM21, RM25, RM26, RM64
NOTE: Implementation SHALL support primaryKeyFields list consisting of the single element “epc”.
ECSpecValidationException may be thrown for other, unsupported, combinations of primaryKeyFields.

Pre-test conditions:

• A Valid ECSpec (M > N) has been defined as follows:

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger,

startTriggerList
Null

duration N Sec stableSetInterval 0 sec stopTrigger,
stopTriggerList

Null

reportSet ADDITION whenDataAvailable False
includeCount No includeEPC Yes includeTag No
reportIfEmpty True reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No primaryKeyFields @0.32.32
filterList No statProfileNames No

• There are no users subscribed to the ECSpec.
• The Gen2 tags with unlocked Access Password fields are required.
NOTE: If the ALE Implementation does not support the specified primaryKeyFields value with the specified
logical reader, the implemation may raise an ECSpecValidationException in step 2. This response meets
conformance requirements. It should be verified the the ECSpecValidationException is not being raised due
to another error condition with the ECSpec. However, if the primaryKeyFields list just contains one value,
‘epc’, an ECSpec validation error should not be raised.

Step Step description Expected results

1 Place a Gen2 tag (T1) with a known access
password in the reader field.

2 Invoke the subscribe method to subscribe to
the ECSpec providing its HTTP Notification
URI

Verify that the an ECReports is received at the end of
N sec to the notification URI Verify that ECReport
contains information of tag T1. Alternatively, an
ECSpecValidationException could be raised. (see note
above).

3 Place another Gen2 tag (T2) with the same
known access password in the reader field
before the start of the next event cycle.

Verify that the an empty ECReports is received at the
end of N sec to the notification URI.

4 Place another Gen2 tag (T3) with a different
known access password in the reader field
before the start of the next event cycle.

Verify that the an ECReports is received at the end of
N sec to the notification URI Verify that ECReport
contains information of tag T3.

5 Replace the primaryKeyFields of the
ECSpec in pre-test condition by a list of
{EPC, @0.32.32}. Repeat step 1-4.

Verify that in step 3, an ECReports is received at the
end of N sec to the notification URI containing
information of tag T2.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 79 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 80 of 150

6 Repeat step 1-5 with Access Passwords
locked for the Gen2 tags T2 and T3.

Verify that all ECReports received are empty except in
step 2.

7 Unsubscribe from the current ECSpec. Verify the unsubscribe is successful

8 Use a new ECSpec that is the same as the
one given in the pretest conditions except
that primaryKeyFields is changed to just
hold one value in its list: ‘epc’

9 Place a Gen2 tag (T1) reader field that is
programmed with a valid epc value.

10 Invoke the subscribe method to subscribe to
the ECSpec providing its HTTP Notification
URI

Verify that the an ECReports is received at the end of
N sec to the notification URI Verify that ECReport
contains information of tag T1. Note: it is a
conformance requirement failure for a implementation
to raise an ECSpecValidation error for this test step
(see note above).

11 Unsubscribe from the current ECSpec.

 532

14.11 TCR-R11 – Interpretation of new in stableSetInterval, 533
Reading API 534

Interpretation of new in stableSetInterval, Reading API
TPId: TCR-R11

Requirement Purpose: This Test confirms that, in context of stablesetinterval, “new” is to be interpreted
collectively among readers contributing to this eventcycle is working properly.
Requirements Tested: GM1, RM1, RM11, RM19, RM21, RM25, RM64

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 81 of 150

• Pre-test conditions: A valid ECSpec has been defined with a stablesetInterval of L seconds and a
duration of N second where L< N as shown below.

ECSpec

Parameter Value Parameter Value Parameter Value
Reader List 2 Readers repeatPeriod 0sec startTrigger,

startTriggerList
Null

duration N stableSetInterval L sec stopTrigger,
stopTriggerList

Null

reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC Yes includeTag No
reportIfEmpty true reportOnlyOnChange false includeSpecInReports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No
filterList No statProfileNames No

• There are no users subscribed to the ECSpec.
• A valid notification URI exists that can accept ECReports from the ALE implementation

Step Step description Expected results
1 Put one tag in “Reader1” field.

2
Invoke the subscribe method to subscribe the user and
activate the ECSpec

Subscribe returns void. The user should be
subscribed to the ECSpec. The first event cycle
should begin.

3

Put the same tag in “reader2” field before L expired. An ECReports should be sent to the notification
URI after L seconds (when the stableSetInterval
timeout occurs). The ECReports should conform
to a report output per the XSD in the ALE
specification and include the added tag.

4 Invoke Unsubscribe
 535

14.12 TCR-R12 – Stability of EPC set, Reading API 536
Stability of EPC set, Reading API

TPId: TCR-R12

Requirement Purpose: This Test confirms that, in the context of stablesetinterval only Additions but not the
Deletions are considered in determining that the EPC set is “stable”.
Requirements Tested: GM1, RM1, RM11, RM26, RM64

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 82 of 150

Pre-test conditions:
• A valid ECSpec has been defined with a stablesetInterval of L seconds and a duration of N second

where L< N as shown below.

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod 0sec startTrigger,

startTriggerList
Null

duration N stableSetInterval L sec stopTrigger,
stopTriggerList

Null

reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC Yes includeTag No
reportIfEmpty True reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No
filterList No statProfileNames No

• There are no users subscribed to the ECSpec.
• A valid notification URI exists that can accept ECReports from the ALE implementation

Step Step description Expected results

1
Invoke the subscribe method to subscribe the user and
activate the ECSpec

Subscribe returns void. The user should be
subscribed to the ECSpec. The first event cycle
should begin.

2

Continually add tags to the reader field at a rate faster
than one tag per L seconds for a period longer than N
seconds.

An ECReports should be sent to the notification
URI after N seconds (when the duration timeout
occurs). The ECReports should conform to a
report output per the XSD in the ALE
specification and include all added tags.

3

During the next eventcycle remove tags from the
reader field at a rate faster than one tag per L seconds.

An ECReports should be sent to the notification
URI after L seconds (when the stableset timeout
occurs). The ECReports should conform to a
report output per the XSD in the ALE
specification. And include all tags.

4 Invoke Unsubscribe
 537

14.13 TCR-R13 – includeSpecInReports, Reading API 538
 includeSpecInReports, Reading API
TPId: TCR-R13

Requirement Purpose: This Test confirms that if includeSpecInReports is true in ECSpec definition then
every ECReport instance must include the complete ECSpec as a part of ECReport.
Requirements Tested: GM1, RM1, RM6, RM23, RM40

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 83 of 150

Pre-test conditions:
• A valid ECSpec has been defined with a repeatPeriod of M seconds and a duration of N second where

M > N as shown below.

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger,

startTriggerList
omitted

duration N sec stableSetInterval 0 stopTrigger,
stopTriggerList

omitted

reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount Yes includeEPC Yes includeTag No
reportIfEmpty True reportOnlyOnChange True includeSpecInreports True
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No
filterList No statProfileNames No

Step Step description Expected results

1 Define an ECSpec according to the conditions
specified in pre-test.

One ECSpec object of the specified name will be
defined in ALE middleware.

2

Place a set of tag in the reader field.

3

Invoke poll using the name of defined ECSpec After N seconds, an ECReport that conforms the
ale XSD should be returned listing all tags in the
reader field. And the report should include the
ECSpec also.

 539

14.14 TCR-R14 – stableSetInterval and duration, Reading API 540
stableSetInterval and duration, Reading API

TPId: TCR-R14

Requirement Purpose: This Test Case confirms the correct operation of the stableSetInterval and repeatPeriod
features of the ECSpec. It also tests the includeTag for the ECReport and the reportIfEmpty field.
Requirements Tested: GM1, RM1, RM11, RM64

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 84 of 150

Pre-test conditions:
• A valid ECSpec has been defined with a repeatPeriod of M seconds and a stableSetInterval of N second

where M > N as shown below.

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger,

startTriggerList
Null

duration 0 stableSetInterval N sec stopTrigger,
stopTriggerList

Null

reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC Yes includeTag No
reportIfEmpty True reportOnlyOnChange False includeSpecInreports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No
filterList No statProfileNames No

• There are no users subscribed to the ECSpec.
• A valid notification URI exists that can accept ECReports from the ALE implementation

Step Step description Expected results

1 Invoke the subscribe method to activate the ECSpec
and begin the event cycle

Subscribe returns void

2
Continually add tags to the reader field at a rate faster
than one tag per N seconds for a period longer than M
seconds.

No ECReports should be returned at a time less
than M nor at a time greater than M

3

Stop the introduction of new tags. N seconds after the introduction of new tags is
stopped, confirm an ECReports that conforms to
the ALE XSD was returned and contained Tag
EPCs for all tags introduced during step 2.

 541

543
14.15 TCR-R15 – Additions, RepeatPeriod and duration, Reading 542

API
Additions, RepeatPeriod and duration, Reading API

TPId: TCR-R15

Requirement Purpose: This Test Case Requirement confirms the tag Additions, duration, repeatPeriod,
includeRawHex and reportOnlyOnChange=true features of the ECSpec. The test will verify the correct
operation of the repeatPeriod and duration features for the cases where repeatPeriod > duration and
repeatPeriod < duration.
Requirements Tested: GM1, RM1, RM11, RM22, RM26, RM39, RM41, RM43, RM64

Pre-test conditions:
• A valid ECSpec has been defined with a repeatPeriod of M seconds and a duration of N second where

M > N as shown below.

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger,

startTriggerList
omitted

duration N sec stableSetInterval 0 stopTrigger,
stopTriggerList

omitted

reportSet ADDITIONS primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC No includeTag No
reportIfEmpty True reportOnlyOnChange True includeSpecInreports False
includeRawHex Yes includeRawDecimal No groupSpec No
includePatterns No excludePatterns No
filterList No statProfileNames No

• There are no users subscribed to the ECSpec.
• A valid notification URI exists that can accept ECReports from the ALE implementation.

Step Step description Expected results

1
Invoke the subscribe method to subscribe the user and
activate the ECSpec

Subscribe returns void. The user should be
subscribed to the ECSpec. The first event cycle
should begin.

2

Move a set of tags into the reader field An ECReports should be sent to the notification
URI after N seconds (when the duration timeout
occurs). The ECReports should conform to a
report output per the XSD in the ALE
specification and all tag EPCs should be
represented in raw hex format.

3

Remove some but not all of the tags in the set starting
before the next event cycle begins.

A new event cycle should begin after the
repeatPeriod of M second is reached, measured
from the start of the previous event cycle.
Another ECReports that conforms to the ALE
XSD should be sent to the notification URI after
N seconds after the start of the event cycle. The
ECReports should conform to a report output per
the ALE specification. The report should
include an ECReport instance but that ECReport
should be empty since no tags were added.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 85 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 86 of 150

4

Add the tags that were removed in step 3. A new event cycle should begin after the
repeatPeriod of M second is reached, measured
from the start of the previous event cycle.
Another ECReports should be sent to the
notification URI after N seconds after the start of
the event cycle. The ECReports should conform
to the ALE XSD. The report should contain the
tag EPCs that were added back.

5

Keep the tags in the reader field the same. Do not add
or remove any tags.

A new event cycle should begin after the
repeatPeriod of M second is reached, measured
from the start of the previous event cycle. No
ECReports should be received by the notification
URI either before or after the duration period
expires or before or after the repeatPeriod
expires.

6 Unsubscribe from the current ECSpec Unsubscribe returns void. The user should be
unsubscribed the ECSpec should be inactive.

7

Invoke the subscribe method using a new ECSpec
that sets the duration period N is greater than the
repeatPeriod M. All other ECSpec parameter should
be the same as before.

Subscribe returns void. The user should be
subscribed to the new ECSpec. The first event
cycle should begin.

8

Move a set of tags into the reader field An ECReports that conforms to the ALE XSD
should be sent to the notification URI after N
seconds (when the duration timeout occurs). The
ECReports should conform to a report output per
the ALE specification and all tag EPCs should be
represented in raw hex format. The next event
cycle should begin immediately.

9

Add tags to the reader field Another ECReports that conforms to the ALE
XSD should be sent to the notification URI after
N seconds (when the duration timeout occurs).
The ECReports should conform to a report
output per the ALE specification and contain just
the EPCs that were added represented in raw hex
format. The next event cycle should begin
immediately.

10 Unsubscribe from the ECSpec Unsubscribe returns void. The user should be
unsubscribed the ECSpec should be inactive.

 544

14.16 TCR-R16 – Include Filter, Groups and Multiple Readers, 545
Reading API 546

Include Filter, Groups and Multiple Readers, Reading API
TPId: TCR-R16

Requirement Purpose: This Test Case confirms the include filter, groupSpecs, multiple logical reader support,
reportOnlyOnChange, includeCount and multiple ECReport instances in an ECReports.
Requirements Tested: GM1, GM92, RM1, RM27, RM29, RM30, RM32, RM34, RM39, RM40, RM41,
RM43, RM54, RM55
Pre-test conditions:

• A valid ECSpec has been defined with an include filter, groupSpec, multiple logical readers in the
reader list, and multiple ECReportSpec(s) in the reportSet list. The repeatPeriod M equals the duration
N (M=N).

• There are no users subscribed to the ECSpec.
• A tag set suitable to properly exercise the groupSpec and Filter Pattern features is ready. For tests that

verify the groupSpec feature, the tag set should be such that there are tags that will match the patterns
so they will fall into specified groups and there will also be tags that do not match any patterns and thus
be placed in the default group.

 A valid notification URI exists that can accept ECReports from the ALE implementation.

ECSpec
includeSpecInReports = Yes

Boundary Parameters
Parameter Value Parameter Value Parameter Value
Reader List 2 Readers repeatPeriod M sec startTrigger,

startTriggerList
Null

duration N sec stableSetInterval 0 stopTrigger,
stopTriggerList

Null

ECReport Instance 1
Parameter Value Parameter Value Parameter Value
reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount Yes includeEPC Yes includeTag No
reportIfEmpty False reportOnlyOnChange True
includeRawHex No includeRawDecimal No groupSpec Yes
includePatterns No excludePatterns No fieldSpec epc,

EPC,
epc-
tag

filterList No statProfileNames No
ECReport Instance 2

Parameter Value Parameter Value Parameter Value
reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC No includeTag Yes
reportIfEmpty True reportOnlyOnChange False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns Yes excludePatterns No
filterList No statProfileNames No

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 87 of 150

Step Step description Expected results

1
Invoke the subscribe method to subscribe the user and
activate the ECSpec

Subscribe returns void. The user should be
subscribed to the ECSpec. The first event cycle
should begin.

2

The set of tags should be in the reader field of at least
one of the logical readers.

The event cycle should end after the duration
period time expires. ECReports that conforms to
the ALE XSD should be sent to the notification
URI. The next event cycle should be begin
immediately after the duration period expires.
An ECReports should be sent to the notification
URI. The ECReports should conform to a report
output per the ALE specification. There should
be two ECReport instances in the ECReports.
The first instance should contain all the tags
grouped according the groupSpec with a count
provided for each group. The second report
instance should contain a list of Tag EPCs that
have passed the include filter.

3

Remove all of the tags that would pass the include
filter. Only tags that would be filtered out should
remain in the tag set.

ECReports that conforms to the ALE XSD
should be sent to the notification URI. The event
cycle should end after the duration period time
expires. The next event cycle should be begin
immediately after the duration period expires.
An ECReports should be sent to the notification
URI. The ECReports should conform to a report
output per the ALE specification. There should
be two ECReport instances in the ECReports.
The first instance should contain all the tags in
the grouped according the groupSpec with a
count provided for each group. There second
report instance should be present but empty.

4

The tag set should remain unchanged from step 3 for
the next event cycle.

The event cycle should end after the duration
period time expires. ECReports that conforms to
the ALE XSD should be sent to the notification
URI. The next event cycle should be begin
immediately after the duration period expires.
An ECReports should be sent to the notification
URI. The ECReports should conform to a report
output per the ALE specification. There should
be only one ECReport instance in the ECReports
for the ECReport instance 2. It should be empty.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 88 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 89 of 150

5

Add tags back to the tag set for the next event cycle.
The tags should be able to pass the include filter.

The event cycle should end after the duration
period time expires. ECReports that conforms to
the ALE XSD should be sent to the notification
URI. The next event cycle should be begin
immediately after the duration period expires.
An ECReports should be sent to the notification
URI. The ECReports should conform to a report
output per the ALE specification. There should
be two ECReport instances in the ECReports.
The first instance should contain all the tags
grouped according the groupSpec with a count
provided for each group. The second report
instance should contain a list of Tag EPCs that
have passed the include filter.

6 Unsubscribe from the ECSpec Unsubscribe returns void. The user should be
unsubscribed the ECSpec should be inactive.

 547

549
14.17 TCR-R17 – Include Filtering, Reading API 548

Include Filtering, Reading API
TPId: TCR-R17
Requirement Purpose: This Test Case Requirement confirms the following features of the ECSpec: include
count, include current, includeTag format, includeRawDecimal format, reportIfEmpty=false, include pattern
filtering and one logical reader in the reader list.
Requirements Tested: GM1, GM26, GM27, GM28, GM29, GM30, GM33, GM34, GM35, GM36, GM37,
GM38, GM39, GM40, GM42, GM43, GM44, GM46, GM47, GM48, GM50, GM61, GM63, GM65, GM66,
GM67, GM68, GM69, GM71, GM82, GM84, GM85, GM86, GM87, GM88, GM89, GM90, GM91, GM92,
GM93, GM94, GM96, GM97, GM98, GM99, GM100, GM101, GM102, GM103, GM104, GM105, GM106,
GM107, GM108, GM109, GM110, GM111, GM112, RM1, RM9, RM27, RM29, RM30, RM34, RM40, RM45

Pre-test conditions:
• A valid ECSpec has been defined as shown. The repeatPeriod = the duration (M = N)

ECSpec

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M startTrigger,

startTriggerList
omitted

duration N stableSetInterval 0 stopTrigger,
stopTriggerList

omitted

reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount Yes includeEPC No includeTag Yes
reportIfEmpty False reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal Yes groupSpec No
includePatterns Yes excludePatterns No
filterList Yes statProfileNames No

ECFilterListMember

Parameter Value Parameter Value Parameter Value
includeExclude Include Fieldspec ECFieldspec1/

ECFieldspec2/
ECFieldspec3/
ECFieldspec4

patList valid
pattern
list

ECFieldSpec1

Parameter Value Parameter Value Parameter Value
Fieldname @1.96.32 Datatype uint Format hex

ECFieldSpec2
Parameter Value Parameter Value Parameter Value
Fieldname @4.1.0 Datatype uint Format hex

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 90 of 150

ECFieldSpec3
Parameter Value Parameter Value Parameter Value
Fieldname epc Datatype epc Format epc-tag

ECFieldSpec4

Parameter Value Parameter Value Parameter Value
Fieldname killPwd Datatype omitted Format omitted

ECFieldSpec5

Parameter Value Parameter Value Parameter Value
Fieldname accessPwd Datatype omitted Format omitted

ECFieldSpec6
Parameter Value Parameter Value Parameter Value
Fieldname userDefined* Datatype omitted Format omitted
*userDefined refers to a filed name defined using the TM API

• There are no users subscribed to the ECSpec.
• A tag set of Gen 2 tags that will have some but not all tags pass the include filter is required.

Step Step description Expected results

1

Invoke the poll method to activate the ECSpec
(using ECFieldSpec1) and begin the event
cycle. Ensure that the tag set is in the reader
field.

The event cycle should have started.

2

Verify that after time M, when the repeatPeriod
expires, an ECReports is returned by the poll.

An ECReports that conforms to the ALE XSD should
be returned by the poll in Step 1. It should include
those tags from the tag set that matched the include
filter. The tag identities should be provided in Tag
and Raw Decimal Format and should be consistent
with the EPCs on the tags. A count of the tags should
be in the report.

3
Invoke the poll method again but only have tags
in the tag set presented to the reader field where
all tags that will be filtered out by include filter.

After the repeatPeriod expires after time M, an
ECReports that conforms to the ALE XSD should be
returned. It should include an empty ECReports.

4
Repeat steps 1-3 with ECFieldSpec2 Verify that the ECReport omits value field in

ECReportMemberField because of “field not found”
condition.

5 Repeat steps 1-3 with ECFieldSpec3 Verify that the tags with the same epc value are
included in the ECReport.

6 Repeat steps 1-3 with ECFieldSpec4 Verify that the tags with the same killpwd value are
included in the ECReport.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 91 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 92 of 150

7 Repeat steps 1-3 with ECFieldSpec5 Verify that the tags with the same accesspwd value are
included in the ECReport.

8

Repeat steps 1-3 with ECFieldSpec6 (optional) Verify that the tags with the userDefined value are
included in the ECReport. Note: the tags could be
excluded as a result of raising the “operation not
possible” condition because the ALE implementation
does not support tidBank.

 550

14.18 TCR-R18 – Reporting Variable Fields, Reading API 551
Reporting Variable Fields, Reading API

TPId: TCR-R18

Requirement Purpose: This Test Case demonstrates the variable fieldname feature which including the
ECReportOutputFieldSpec report, and the testing of the variable fieldname syntax. The test result will be
different for those implementations that fully support the feature and those that only recognize the syntax.
Requirements Tested: GM1, GM72, GM73, GM74, GM75, GM78, GM79, GM80, GM81, RM1, RM23,
RM44

Pre-test conditions:
• A tag with a user memory bank that has been correctly encoded according to ISO 15962.
• ECSpec and ECReportOutputFieldSpecs for the test:

ECSpec

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M sec startTrigger,

sartTriggerList
Null

duration N sec stableSetInterval 0 stopTrigger,
stopTriggerlIst

Null

reportSet CURRENT primaryKeyFields Null whenDataAvailable False
includeCount No includeEPC No includeTag No
reportIfEmpty True reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No
filterList No statProfileNames No

ECReportOutputFieldSpec A

Parameter Value
FieldSpec @3.urn:oid:1.0.15961.12.4
Name IssuingStation
Include FieldSpec No
Datatype Omitted
Format Omitted

ECReportOutputFieldSpec B

Parameter Value
FieldSpec @3.urn:oid:1.0.15961.12.*
Name omitted
Include FieldSpec No
Datatype Omitted
Format Omitted

ECReportOutputFieldSpec C
Parameter Value
FieldSpec @0.urn:oid:1.0.15961.12.*
Name omitted
Include FieldSpec No
Datatype Omitted
Format Omitted

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 93 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 94 of 150

ECReportOutputFieldSpec D
Parameter Value
FieldSpec @2.urn:oid:1.0.15961.12.*
Name omitted
Include FieldSpec No
Datatype Omitted
Format Omitted

Step Step description Expected results

1 Place a tag in the reader field

2

Invoke the immediate method using the ECSpec with
ECReportOutputFieldSpecA as specified in the pre-test
conditions.

An ECReport should be returned that
includes the variable field specified. The
field is not returned if the implementation
does not support variable fields.

3

Invoke the immediate method using the ECSpec with
ECReportOutputFieldSpecB as specified in the pre-test
conditions.

An ECReport should be returned that
includes all variable fields encoded in the
tag’s user memory bank. The field is not
returned if the implementation does not
support variable fields

4

Invoke the immediate method using the ECSpec with
ECReportOutputFieldSpecC as specified in the pre-test
conditions.

An ECReport should be returned that raises
the “field not found” condition. It could also
raise the “operation not found” condition if
the implementation does not support variable
fields. In either case the condition will result
in omitting the relavent field.

5

Invoke the immediate method using the ECSpec with
ECReportOutputFieldSpecD as specified in the pre-test
conditions.

An ECReport should be returned that raises
the “field not found” condition. It could also
raise the “operation not found” condition if
the implementation does not support variable
fields. In either case the condition will result
in omitting the relavent field.

14.19 TCR-R19 – Initiation and Termination Conditions for 552
Undefining an ECSpec during Active Poll, Reading API 553
 554

Initiation and Termination Conditions for Undefining an Active Poll, Reading API
TPId: TCR-R19
Requirement Purpose: This Test Case Requirement verifies that the initiation and termination conditions are
properly filled when an active ECSpec, as a result of a Poll call, is undefined.
Requirements Tested: GM1, GM17, RM1, RM48
Pre-test conditions:

• A valid ECSpec has been defined with repeatPeriod = 0 sec, duration = 30 sec.

Step Step description Expected results

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 95 of 150

1 Invoke the poll method using the ECSpec
defined in pre-test condition.

Poll call is outstanding.

2 Wait for 10 sec. -

3

Invoke � ndefined method to � ndefined the
ECSpec defined in step 1.

Verify that an ECReports is received right after the
� ndefined call with InitiationCondition =
REQUESTED and TerminationCondition =
UNDEFINE.

 555

557
14.20 TCR-R20 – Realtime Clock Trigger 556

Realtime Clock Trigger
TPId: TCR-R20
Requirement Purpose: This Test Case Requirement verifies the proper operation of the realtime clock trigger..
Requirements Tested: GM1, RM1, RM17, RM18
Pre-test conditions:

• A valid ECSpec has been defined with duration = N seconds and a real-time clock trigger for the start
trigger. The period for the real-time clock trigger should be greater than N seconds with an offset equal
0 and a timezone set to the local timezone. Report if empty should be true.

Step Step description Expected results

1
Invoke the subscribe method using the ECSpec
defined in pre-test condition using a valid using
a valid notification URI.

A subscription should be active

2
Wait for number of milliseconds past midnight
modulo period equals offset plus N seconds

Verify an ECReports is sent to the notification URI N
seconds after the real-time clock start trigger was set
off.

3 Invoke � ndefined method to � ndefined the
ECSpec defined in step 1.

 558

14.21 TCR-R21 – XML Vendor Extension Validaion 559
XML Vendor Extension Validation

TPId: TCR-R21
Requirement Purpose: This Test Case confirms that vendor extensions to the ECSpec and ECReports have
been added in accordance with the rules set forth in the ALE 1.1 specification. This TCR is opational. This
TCR only needs to be executed for implementation that have vendor extension.
Requirements Tested: XM1, XM2, XM3, XM4, XM5, XM6, XM8, XM9, XM12

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 96 of 150

Pre-test conditions:
• The vendor has submitted XML files containing instances of ECSpecs and ECReports that contain the

the vendor extensions or the vendor’s XSD for the Reading API or appropriate documentation
confirming the vendor is the owner of the namespace used for the vendor extensions.

• The vendor has provided its XSD files so they can be inspected to ensure that elements, attributes and
extensions have not be added in places not allowed by the specification.

Step Step description Expected results

1

Examine the XML documents, XSD
documents or other documentation submitted
by the vendor to verify the vendor is the
owning authority for the name space used for
all vendor attribute and element extensions.

Confirm (by design)

2

Validate the XML ECReports and ECSpec
instance documents received in TCR-R1
through R20 against the ALE 1.1 Reading API
XSD. (See section 13.4)

The XML documents should validate successfully.

3

Inspect the vendor XSDs to ensure that
elements, attributes and extensions have not
be added in places not allowed by the ALE 1.1
specification.

There are no elements, attributes and extensions added in
the vendor’s XSDs in places not allowed by the ALE 1.1
specificatoin.

 560
561

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 97 of 150

15 Writing API 562

15.1 TCR-W1 – Get Version, Writing API 563
 564

Get Version, Writing API
TPId: TCR-W1
Requirement Purpose: This Test Case confirms the proper functions of the ALE methods of the Writing API
that return the ALE standard version and the vendor version for the ALE implementation under test. The return
of correct version numbers also confirms the correct implementation is being tested.
Requirements Tested: GM1, GM2, GM3, GM4, GM5, WM1
Pre-test conditions:

• None
Step Step description Expected results

1 Invoke the getStandardVersion method of the
Writing API

Confirm the string “1.1” is returned.

2

Invoke the getVendorVersion method of the
Writing API

• Confirm that either an empty string or a string
conforming to a proper URI is returned.

• Confirm the vendor is the owning authority of the
URI if the returned string is not empty (by Design)

• Confirm the result returned by this method only
pertain to the API to the Writing API.

 565

567
568

15.2 TCR-W2 – Defining, Un-defining, Retrieving CCSpecs, 566
Writing API

Defining, Un-defining, Retrieving CCSpecs, Writing API

TPId: TCR-W2
Requirement Purpose: This Test Case confirms that a valid CCSpec can be defined and undefined. Further
the defining and un-defining of the CCSpec can be verified with ALE API methods getCCSpec and
getCCSpecNames.
Requirements Tested: GM1, GM6, GM7, GM12, WM1, WM2, WM3
Pre-test conditions:

• No CCSpecs are defined.
• Ensure all specName parameters accept as a name any non-empty string of Unicode characters that does

not include Pattern_White_Space or Pattern_Syntax characters (see GM6)
• For step 7, the ALE implementation should support reading APIs.

Step Step description Expected results

1
Invoke the define method with a valid CCSpec
without extensions

The ALE implementation contains the CCSpec
definition supplied in the define method. Steps 2 and 3
confirm the defining of the CCSpec.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 98 of 150

2 Verify the CCSpec was defined by invoking
the getCCSpecNames method

Verify that the name returned in the list is that of the
CCSpec defined in step 1.

3 Invoke getCCSpec using the name of the
defined CCSpec.

Verify that the CCSpec returned is equivalent to the one
defined

4 Invoke � ndefined to remove the CCSpec that
was defined.

The ALE implementation should no longer have the
CCSpec defined. Confirmed by step 5.

5 Verify that the CCSpec is undefined by
invoking the getCCSpecNames method.

Verify that the list returned is empty.

6

Repeat steps 1 through 5 for a valid CCSpec
with extensions.

Note that when Step 3 is repeated, the CCSpec returned
by getCCSpec may not necessarily include any of the
extension elements provided in Step 1, if those
extensions are not understood by the implementation.

7

Invoke the define method with an ECSpec and
specName = “foo”. Invoke the define method
with a CCSpec and specName = “foo”.
(optional – only if the implementation
implanted both the reading and writing APIs.)

Verify that the ALE implementation does accept both
the ECSpec and the CCSpec and does not raise a
DuplicateNameException.

 569

571
15.3 TCR-W3 – Exceptions, Writing API 570

Exceptions, Writing API
TPId: TCR-W3
Requirement Purpose: This Test Case confirms that the ALE implementation will raise all exceptions as
defined in the ALE specification. This covers exceptions raised due to incorrect parameters passed in ALE
API methods and exceptions raised due to missing or invalid parameters in an CCSpec.
Requirements Tested: GM1, GM6, GM8, GM32, GM38, GM42, GM46, GM50, GM55, GM60, GM64,
GM83, RM31, WM1, WM5, WM8, WM10, WM13, WM18, WM22, WM29, WM40, WM43, WM57, WM63,
WM65, WM70
Pre-test conditions:

• No CCSpecs are defined
Note: The CCSpecs used in this Test Case Requirement should be valid except for the conditions specified
in step being performed.

Step Step description Expected results

1 Invoke the getCCSpec with an unknown spec
name.

Verify that the ALE implementation raises a
NoSuchNameException.

2 Invoke the poll method using an unknown
name for the CCSpec string.

Verify that the ALE implementation raises a
NoSuchNameException.

3 Invoke the subscribe method with an unknown
CCSpec name

Verify that the ALE implementation raises a
NoSuchNameException.

4

Invoke the unsubscribe method with a defined
CCSpec name and a well formed notification
URI. The notification URI should not belong
to a user who is subscribed

Verify that the ALE implementation raises a
NoSuchSubscriberException.

5

Invoke the subscribe method using the name
of a valid and defined CCSpec and a well
formed notification URI that is not supported
by the implementation under test

Verify that the ALE Implementation raises an
InvalidURIException

6 Invoke the unsubscribe method with an
unknown CCSpec name

Verify that the ALE implementation raises a
NoSuchNameException.

7 Invoke the getSubscribers method with an
unknown CCSpec name

Verify that the ALE implementation raises a
NoSuchNameException.

8 Invoke the � ndefined method with an
unknown CCSpec name.

Verify that the ALE implementation raises a
NoSuchNameException.

9 Invoke the subscribe method with an non-
conforming URI

Verify that the ALE Implementation raises an
InvalidURIException

10 Invoke the unsubscribe method with a defined
CCSpec name and an non-conforming URI

Verify that the ALE Implementation raises an
InvalidURIException

11 Invoke the define method with a valid CCSpec The ALE implementation holds the CCSpec definition

12 Verify the CCSpec was defined by invoking a
getCCSpecNames method

Verify that the name returned is that of the CCSpec just
defined

13
Invoke the define method again with a valid
CCSpec and the name of the CCSpec defined
in step 11.

Verify that the ALE implementation raises a
DuplicateNameException

14
The same subscriber should subscribe to the
CCSpec to which the subscriber is already
subscribed.

Verify that the ALE implementation raises a
DuplicateSubscriptionException

15

Invoke the immediate method with a CCSpec
that has a logicalReaders list which is either
null, or omitted, or an empty list, or contains
names that are unknown to the ALE
implementation.

Verify that the ALE implementation raises an
CCSpecValidationException

16
Invoke the define method with a CCSpec that
has a CCBoundarySpec parameter that is null
or omitted.

Verify that the ALE implementation raises a
CCSpecValidationException

17
Invoke the define method with a CCSpec that
has a tagsProcessedCount of
CCBoundarySpec parameter that is negative.

Verify that the ALE implementation raises a
CCSpecValidationException

18

Invoke the define method with a CCSpec
whose CCBoundarySpec contains a duration,
repeatPeriod, or noNewTagsInterval
parameter that is negative

Verify that the ALE implementation raises a
CCSpecValidationException

19
Invoke the define method with a CCSpec
whose CCBoundarySpec has no termination
condition except afterError.

Verify that the ALE implementation raises a
CCSpecValidationException

20
 Invoke the define method with two
CCCmdSpec instances with identical name
fields.

Verify that the ALE implementation raises a
CCSpecValidationException

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 99 of 150

21

Invoke the immediate method with a CCSpec
whose CCBoundarySpec has a startTrigger or
a stopTrigger which has a value that does not
conform to the URI syntax.

Verify that the ALE implementation raises a
CCSpecValidationException

22

Invoke the define method with a CCSpec
which has the patList parameter of
ECFilterListMember instance empty, null or
omitted.

Verify that the ALE implementation raises a
CCSpecValidationException

23
Invoke the define method with a CCSpec
whose CCOpSpec has a opType parameter
which is not a standard opType value.

Verify that the ALE implementation raises a
CCSpecValidationException

24

Invoke the define method with a CCSpec
whose CCOpSpec has a opType parameter
which requires a fieldspec, and fieldspec is
null or omitted.

Verify that the ALE implementation raises a
CCSpecValidationException

25

Invoke the define method with a CCSpec
whose CCOpSpec has an opType parameter
which does not require a fieldspec, and
fieldspec is specified.

Verify that the ALE implementation raises a
CCSpecValidationException.

26.

Invoke the define method with a CCSpec
whose CCOpSpec has an opType parameter
which requires a dataSpec, and dataSpec is
null or omitted.

Verify that the ALE implementation raises a
CCSpecValidationException.

27

Invoke the define method with a CCSpec
whose CCOpSpec has an opType parameter
which does not require a dataSpec, and
dataSpec is specified.

Verify that the ALE implementation raises a
CCSpecValidationException.

28

Invoke the define method with a CCSpec
whose CCOpSpec has an opType parameter
whose dataSpec parameter specifies a value
that is invalid for the specified operation.

Verify that the ALE implementation raises a
CCSpecValidationException.

29
Invoke the define method with a CCSpec
whose statProfileNames contain an element
with unknown statistics profile

Verify that the ALE implementation raises a
CCSpecValidationException

30

Invoke the define method with a CCSpec
whose CCFilterSpec has filterList with
patList that does not conform to syntax rules
for patterns

Verify that the ALE implementation raises a
CCSpecValidationException

31
Invoke the define method with a CCSpec
whose CCFilterSpec has filterList with
fieldspec with unknown datatype and format

Verify that the ALE implementation raises a
CCSpecValidationException

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 100 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 101 of 150

32

Invoke the define method with a specName
that uses a diacritical letter (e.g. embarcadère).
Then invoke the � ndefined method with a
specName that looks equivalent but does not
contain the diacritical mark (e.g. embarcadere)

Verify that the ALE implementation raises a
NoSuchNameException

33
Invoke the poll method which has two or more
CCParameterEntryList intstances wit the same
name.

Verify that the ParameterException is raised.

34 Invoke the immediate method which includes
a CCOpDataSpec of type PARAMETER.

Verify that the ParameterForbidden Exception is raised.

35

Define a CCSpec that includes a
CCOpDataSpec of type PARAMETER and
then Invoke the the subscribe method using
the CCSpec just defined.

Verify that the ParameterForbidden Exception is raised.

 572
573

575
576

15.4 TCR-W4 – Subscribe and Unsubscribe for READ Operation, 574
Writing API

Subscribe and Unsubscribe for READ Operation, Writing API

TPId: TCR-W4
Requirement Purpose: This Test Case confirms that clients can subscribe and unsubscribe to CCSpecs that
have been correctly defined and the notification URIs used conforms to the ALE1.1 standard. Multiple
subscriptions to the same CCSpec are tested.
Requirements Tested: GM1, GM9, GM13, GM14, GM15, GM16, GM18, GM84, WM1, WM2, WM6, WM9,
WM11, WM15, WM38, WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52, WM75,
XM15, XM16, XM17, XM18
Pre-test conditions:

• A valid CCSpec has been defined as follows:

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader* includeSpecInReports False startTriggerList Null
duration N Sec repeatPeriod M sec stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 0 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType READ fieldspec epc dataspec Null

• The reader name string should be equal to the CCSpec name string (Test GM9)
• A tag set is placed in the reader field

Step Step description Expected results

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 102 of 150

1
The first subscriber invokes the subscribe
method to subscribe to the CCSpec
providing its HTTP Notification URI

A user is subscribed to the CCSpec in the subscribe
invocation and the associated command cycle is
activated. Step 2 provides verification.

2

Invoke the getSubscribers method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec

3

A second subscriber invokes the subscribe
method to subscribe to the same CCSpec as
step 1 therefore providing its HTTP
Notification URI.

A second user is subscribed to the CCSpec in the
subscribe invocation. Step 4 provides verification.

4

Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 and step 3 should be in the
list. Verify that the correct CCReports are being
received at the notification URI per the boundary
condition specified in the CCSpec

5
The first subscriber un-subscribes by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The first user is unsubscribed.

6
Invoke the getSubscribers method to verify
that the unsubscribe method succeeded and
the first subscriber is no longer subscribed.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 should no longer be in the
list.

7 The second subscriber un-subscribes by
invoking the unsubscribe method.

The second user is unsubscribed

8

Invoke the getSubscribers method to verify
that the unsubscribe method succeeded and
the second subscriber is no longer
subscribed.

getSubscriber returns the list of notification URIs. The
notification URI from step 3 should no longer be in the
list.

9 Repeat steps 1 through 8 replacing the HTTP Notification URIs with a TCP Notification URIs
10 Repeat steps 1 through 8 replacing the HTTP Notification URIs with a File Notification URIs

 577

579
580

15.5 TCR-W5 – Subscribe and Unsubscribe for WRITE and LOCK 578
operations, Writing API

Subscribe and Unsubscribe for WRITE and LOCK operations, Writing API

TPId: TCR-W5

Requirement Purpose: This Test Case confirms that clients can subscribe and unsubscribe to CCSpecs that
have been correctly defined and the notification URIs used conform to the ALE1.1 standard. Functionality of
the field tagsProcessedCount is also verified.
Requirements Tested: GM1, GM13, GM14, GM15, GM16, GM18, GM28, GM31, GM85, GM86, GM87,
GM88, GM89, GM90, GM91, GM93, GM94, GM96, GM97, GM98, GM99, GM100, GM101, GM102,
GM103, GM104, GM105, GM106, GM107, GM108, GM109, GM110, GM111, GM112, WM1, WM2, WM6,
WM9, WM11, WM14, WM15, WM17, WM19, WM21, WM31, WM32, WM34, WM35, WM36, WM38,
WM39, WM41, WM42, WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52, WM58,
WM75

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 103 of 150

Pre-test conditions:
• Three valid CCSpecs have been defined as follows:

CCSpec1
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType WRITE fieldspec epcBank opDataSpecType LITERAL
data hex

value for
epcBank

fieldSpec data type
and format

default

CCSpec2

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No

opType LOCK fieldspec epcBank lockOperation LOCK

CCSpec3
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No

opType LOCK fieldspec epcBank lockOperation UNLOCK

CCSpec4
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No

opType LOCK fieldspec epc lockOperation LOCK

• A Gen2 tag is placed in the reader field

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 104 of 150

Step Step description Expected results

1
A subscriber invokes the subscribe method
to subscribe to the CCSpec1 providing its
HTTP Notification URI

A user is subscribed to the CCSpec1 in the subscribe
invocation and the associated command cycle is
activated. Step 2 provides verification.

2

Invoke the getSubscribers method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec1.

3
The subscriber un-suscribes CCSpec1 by
invoking the � ndefined� t method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

4
The subscriber invokes the subscribe
method to subscribe to CCSpec2 providing
HTTP Notification URI.

The user is subscribed to the CCSpec2 in the subscribe
invocation. Step 5 provides verification.

5

Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 4 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec2.

6
The subscriber un-subscribes CCSpec2 by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

7
The subscriber invokes the subscribe
method to subscribe to the CCSpec1
providing its HTTP Notification URI.

The user is subscribed to the CCSpec1 in the subscribe
invocation. Step 8 provides verification.

8

Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 7 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec1. Verify that statusCode in
tagReports is PERMISSION_ERROR.

9
The subscriber un-subscribes CCSpec1 by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

10
The subscriber invokes the subscribe
method to subscribe to the CCSpec3
providing its HTTP Notification URI

The user is subscribed to the CCSpec3 in the subscribe
invocation. Step 11 provides verification.

11

Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 10 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec3.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 105 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 106 of 150

12
The subscriber un-subscribes CCSpec3 by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

13
The subscriber invokes the subscribe
method to subscribe to the CCSpec1
providing its HTTP Notification URI.

The user is subscribed to the CCSpec1 in the subscribe
invocation. Step 14 provides verification.

14

Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 13 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec1.

15
The subscriber un-subscribes CCSpec1 by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

16
The subscriber invokes the subscribe
method to subscribe to the CCSpec4
providing its HTTP Notification URI

The user is successfully unsubscribed.

17

Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 16 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec4. The “Operation not possible”
error should be speicified in the report since the epc field
cannot be lock.

18
The subscriber un-subscribes CCSpec4 by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

 581

583
15.6 TCR-W6 – Poll, Writing API 582

Poll, Writing API
TPId: TCR-W6

Requirement Purpose: This Test Case confirms that the invocation of poll method can provide a valid
CCSpecName to an ALE implementation and return a CCReports consistent with the parameters set in the
CCSpec and within the boundary conditions.
Requirements Tested: GM1, GM13, GM14, GM15, GM16, GM18, WM1, WM2, WM6, WM9, WM11,
WM14, WM16, WM17, WM19, WM21, WM38, WM44, WM45, WM46, WM47, WM48, WM49, WM50,
WM51, WM52

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 107 of 150

Pre-test conditions:
• Two Valid CCSpecs have been defined: A and B
• Spec A: A valid CCSpec has been defined with a repeatPeriod of M seconds, a duration of N seconds

where M > N
• Spec B: A valid CCSpec has been defined with a repeatPeriod of M seconds, a duration of N seconds

where M < N as shown below:

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration N Sec repeatPeriod M sec stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 0 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType READ fieldspec epc dataspec Null

Step Step description Expected results

1 Place a tag set in the reader field

2
Invoke the poll using the name of spec A (M > N) After N seconds, a CCReports that conforms

to the ALE XSD should be returned listing
all the tags in the reader field.

3 Remove all the tags from the reader field.

4

Invoke the poll using the name of spec A (M > N) After N seconds, a CCReports that conforms
to the ALE XSD and that contains zero
CCReport instances should be returned even
though reportIfEmpty is false.

5 Place a tag set in the reader field

6
Invoke the poll using the name of spec B (M < N) After N seconds, a CCReports that conforms

to the ALE XSD should be returned listing
all the tags in the reader field.

7 Remove all the tags from the reader field.

8

Invoke the poll using the name of spec B (M < N) After N seconds, a CCReports that conforms
to the ALE XSD and that contains zero
CCReport instances should be returned even
though reportIfEmpty is false.

 584

586
15.7 TCR-W7 – Poll, Writing API 585

Poll, Writing API

TPId: TCR-W7

Requirement Purpose: This Test Case confirms that the invocation of two poll methods that use the same
CCSpec but specify different parameters, the ALE implementation SHALL satisfy the second poll by a
initiating a new command cycle rather than sharing the results of the first, as though the second poll were of a
different CCSpec..
Requirements Tested: GM1, GM19, GM20, WM1, WM2, WM6, WM9, WM11, WM14, WM16, WM17,
WM19, WM21, WM38, WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52
Pre-test conditions:

• A Valid CCSpecs has been defined

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration N Sec repeatPeriod N sec stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 0 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType READ fieldspec epc dataspec Null

Step Step description Expected results

1 Place a tag set in the reader field

2
Invoke a poll method setting the params parameter to a
valid value.

After N seconds, a CCReports that conforms
to the ALE XSD and that contains a
CCReport instance should be returned.

3 Wait N/4 seconds

4

Invoke the second poll method setting the params
parameter to a valid value that is different from the
params value from the first poll.

N seconds after the second poll is issued, a
second CCReports that conforms to the ALE
XSD and that contains a CCReport instance
should be returned.

5

Invoke a third poll method without params. N seconds after the third poll is issued, a
CCReports that conforms to the ALE XSD
and that contains a CCReport instance should
be returned..

6 Wait N/4 seconds

7

Invoke a fourth poll method without params The fourth poll should use the same
command cycle as the third poll so it should
return at the same time as the third poll. A
CCReports that conforms to the ALE XSD
and that contains a CCReport instance should
be returned..

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 108 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 109 of 150

 587

589
15.8 TCR-W8 – Immediate, Writing API 588

Immediate, Writing API
TPId: TCR-W8

Requirement Purpose: This Test Case confirms that the invocation of the immediate method can provide a
valid CCSpec to an ALE implementation and return CCReports consistent with the parameters set in the
CCSpec and within the boundary conditions. The test also verifies the inclusion of a CCSpec in CCReports.
Requirements Tested: GM1, GM21, GM22, GM23, GM24, GM25, WM1, WM2, WM6, WM7, WM9,
WM11, WM14, WM16, WM17, WM19, WM21, WM38, WM44, WM45, WM46, WM47, WM48, WM49,
WM50, WM51, WM52
Pre-test conditions:

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports True startTriggerList Null
duration N Sec repeatPeriod M sec stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 0 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType READ fieldspec epc dataspec Null

Step Step description Expected results

1
Place a tag set in the reader field. Keeps the tags in the
reader field for a time greater than the N seconds once the
immediate method is issued.

2

Invoke the immediate method using a valid CCSpec as
specified in the pre-test conditions.

Ensure no CCReports is returned prior to N
seconds. Ensure a CCReports that conforms
to the ALE XSD is returned immediately
after N seconds has past. Confirm the
CCReports contains tag EPCs in Tag format
and the CCSpec appears in the CCReports.

 590

592
593

15.9 TCR-W9 – Using startTriggerList and stopTriggerList, 591
Writing API

Using startTriggerList and stopTriggerList, Writing API

TPId: TCR-W9
Requirement Purpose: This Test Case confirms the following features of the CCSpec: startTriggerList and
stopTriggerList.
Requirements Tested: GM1, WM1, WM6, WM9, WM11, WM14, WM16, WM17, WM19, WM21, WM38,
WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 110 of 150

Pre-test conditions:
• There are no users subscribed to the CCSpec.
• A valid CCSpec has been defined as shown

• StartTriggerList contains startTriggers URI1 and URI2. StopTriggerList contains stopTriggers URI3
and URI4.

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Yes
duration N Sec repeatPeriod M sec stopTriggerList Yes
noNewTagsInterval 0 tagsProcessedCount 0 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType READ fieldspec epc dataspec Null

Step Step description Expected results
1 Invoke the poll method to activate the CCSpec. None

2 Move a set of tags into the reader field and trip
the start trigger URI1.

The Command Cycle should begin

3

Trip the stop trigger URI3 after a sufficient time
has passed for all the tags to have been written
and reported to the ALE implementation.

A CCReports that conforms to the ALE XSD should
be retuned by the poll command issued in step 1. The
CCReports should contain a CCReport that contains
the tag EPCs of those tags place in the reader field.
The CCReports should also contain startTrigger URI1
as initiationCondition and stopTrigger URI3 as
terminationCondition.

4 Invoke the poll method to activate the CCSpec. None

5 Move a set of tags into the reader field and trip
the start trigger URI2.

The Command Cycle should begin

6

Trip the stop trigger URI4 after a sufficient time
has passed for all the tags to have been written
and reported to the ALE implementation.

A CCReports that conforms to the ALE XSD should
be retuned by the poll command issued in step 1. The
CCReports should contain a CCReport that contains
the tag EPCs of those tags place in the reader field.
The CCReports should also contain startTrigger URI2
as initiationCondition and stopTrigger URI4 as
terminationCondition.

 594
595

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 111 of 150

15.10 TCR-W10 – Subscribe and Unsubscribe for KILL operation, 596
Wrting API 597

598
Subscribe and Unsubscribe for KILL operation, Wrting API

TPId: TCR-W10
Requirement Purpose: This Test Case confirms that clients can subscribe and unsubscribe to CCSpecs that
have been correctly defined and the notification URIs used conform to the ALE1.1 standard. Functionality of
the field tagsProcessedCount is also verified.
Requirements Tested: GM1, WM1, WM6, WM9, WM11, WM14, WM15, WM17, WM19, WM21, WM38,
WM39, WM42, WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52, WM75
Pre-test conditions:

• Two valid CCSpecs have been defined as follows:

CCSpec1
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType READ fieldspec epc dataSpec NULL

CCSpec2

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No

opType KILL fieldspec NULL dataSpec Kill
Password

• A Gen2 tag with given Kill Password is placed in the reader field

Step Step description Expected results

1
A subscriber invokes the subscribe method
to subscribe to the CCSpec1 providing its
HTTP Notification URI

A user is subscribed to the CCSpec1 in the subscribe
invocation and the associated command cycle is
activated. Step 2 provides verification.

2

Invoke the getSubscribers method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 1 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec1.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 112 of 150

3
The subscriber un-suscribes CCSpec1 by
invoking the � ndefined� t method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

4
The subscriber invokes the subscribe
method to subscribe to CCSpec2 providing
HTTP Notification URI.

The user is subscribed to the CCSpec2 in the subscribe
invocation. Step 5 provides verification.

5

Invoke the getSubscriber method to verify
that the subscribe method succeeded.

getSubscriber returns the list of notification URIs. The
notification URI from step 4 should be in the list.
Verify that the correct CCReports are being received at
the notification URI per the boundary condition
specified in the CCSpec2.

6
The subscriber un-subscribes CCSpec2 by
invoking the unsubscribe method using its
HTTP Notification URI as a parameter.

The user is successfully unsubscribed.

 599
600

602

15.11 TCR-W11 – Using EPCCache, Writing API 601

Using EPCCache, Writing API
TPId: TCR-W11
Requirement Purpose: This Test Case confirms that clients can subscribe and unsubscribe to CCSpecs that
have been correctly defined and the notification URIs used conform to the ALE1.1 standard. Functionality of
the field tagsProcessedCount is also verified.
Requirements Tested: GM1, WM1, WM6, WM9, WM11, WM14, WM17, WM19, WM21, WM38, WM39,
WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52, WM53, WM54, WM55, WM56,
WM59, WM60
Pre-test conditions:

• A valid CCSpec specified as follows should be used for step 10a.:

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType WRITE fieldspec epc opDataSpecType CACHE
data name of

the
EPCCache
defined in
step 1

• A Gen2 tagset is placed in the reader field

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 113 of 150

Step Step description Expected results

1
Invoke a defineEPCCache method with a
null EPCCacheSpec and an EPCPatternList
(containing patterns1 list) as replenishment.

The EPCCache is defined.

2 Invoke a getEPCCacheNames method. Verify that getEPCCacheNames returns the name of the
EPCCache defined in step 1.

3 Invoke a getEPCCache method with the
name of the EPCCache defined in step 1.

Verify that getEPCCache returns the EPCCacheSpec
used in step 1.

4
Invoke a getEPCCacheContents method
with the name of the EPCCache defined in
step 1.

Verify that EPCPatternList containing patterns1 list is
returned.

5

Invoke a replenishEPCCache method with
the name of the EPCCache defined in step 1
and replenishment (EPCPatternList
containing patterns2 list).

The EPCCache is replenished.

6
Invoke a getEPCCacheContents method
with the name of the EPCCache defined in
step 1.

Verify that EPCPatternList containing patterns1 and
patterns2 lists is returned.

7
Invoke a depleteEPCCache method to
remove from the contents of the EPCCache
defined in step 1.

The EPCCache is depleted.

8

Invoke a replenishEPCCache method with
the name of the EPCCache defined in step 1
and replenishment (EPCPatternList
containing patterns1 list).

The EPCCache is replenished with patterns1

9
Invoke a getEPCCacheContents method
with the name of the EPCCache defined in
step 1.

Verify that EPCPatternList containing patterns1 list is
returned.

10a. Define the above mentioned CCSpec. The CCSpec is defined.

10b.
A subscriber invokes the subscribe method
to subscribe to the CCSpec providing its
HTTP Notification URI

A user is subscribed to the CCSpec in the subscribe
invocation and the associated command cycle is
activated.

11
Wait for CCReports Verify that the correct CCReports are being received at

the notification URI per the boundary condition
specified in the CCSpec.

12a. Undefine the above mentioned CCSpec. The CCSpec is undefined.

12b. Invoke an undefineEPCCache method to
� ndefined the EPCCache defined in step 1.

The EPCCache is undefined.

13 Invoke a getEPCCacheNames method. An empty list of names is returned.

 603

605
15.12 TCR-W12 – Using Association Table, Writing API 604

Using Association Table, Writing API

TPId: TCR-W12
Requirement Purpose: This Test Case confirms that clients can subscribe and unsubscribe to CCSpecs that
have been correctly defined and the notification URIs used conform to the ALE1.1 standard.
Requirements Tested: GM1, WM1, WM6, WM9, WM11, WM14, WM17, WM19, WM21, WM38, WM39,
WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52, WM61, WM62, WM64, WM66,
WM67
Pre-test conditions:

• A valid CCSpec specified as follows should be used for step 1b:

AssoTableSpec
Parameter Value Parameter Value Parameter Value
datatype epc Format epc-hex Entries Valid

AssoTableEntry

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType WRITE fieldspec epc opDataSpecType ASSOCIATION
data name of the

Association
Table
defined in
step 1

• A Gen2 tagset is placed in the reader field

Step Step description Expected results

1a. Invoke a defineAssocTable method with
AssoTableSpec. The association table is defined.

1b. Define the above mentioned CCSpec. The CCSpec is defined.

2 Invoke getAssocTableNames method. The name of the association table defined in step 1 is
returned.

3
Invoke getAssocTable method using the
name of the association table defined in step
1.

The AssoTableSpec is returned.

4
A subscriber invokes the subscribe method
to subscribe to the CCSpec providing its
HTTP Notification URI

A user is subscribed to the CCSpec in the subscribe
invocation and the associated command cycle is
activated.

5
 Verify that the correct CCReports are being received at

the notification URI per the boundary condition
specified in the CCSpec.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 114 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 115 of 150

6a. Undefine the CCSpec defined in Step 1b. The CCSpec is undefined.

6b.
Invoke an undefineAssocTable method to
� ndefined the association table defined in
step 1.

The association table is undefined.

7 Invoke a getAssocTableNames method. An empty list of names is returned.

15.13 TCR-W13 – Using RNG, Writing API 606
 607

Using RNG, Writing API
TPId: TCR-W13
Requirement Purpose: This Test Case confirms that clients can subscribe and unsubscribe to CCSpecs that
have been correctly defined and the notification URIs used conform to the ALE1.1 standard.
Requirements Tested: GM1, WM1, WM6, WM9, WM11, WM14, WM17, WM19, WM21, WM38, WM39,
WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51, WM52, WM53, WM68, WM69, WM71,
WM72, WM73, WM74
Pre-test conditions:

• A valid CCSpec specified as follows should be used for step 1b:

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration 0 repeatPeriod 0 stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 1 afterError False
reportIfEmpty False statProfileNames Null filterList No
opType WRITE fieldspec @1.96.32 opDataSpecType RANDOM
data name of

the RNG
defined
in step 1

• A Gen2 tagset is placed in the reader field

Step Step description Expected results

1a. Invoke a defineRNG method with a
RNGSpec. The RNG is defined.

1b. Define the above mentioned CCSpec. The CCSpec is defined.
2 Invoke getRNGNames method. The name of the RNG defined in step 1 is returned.

3
A subscriber invokes the subscribe method
to subscribe to the CCSpec providing its
HTTP Notification URI

A user is subscribed to the CCSpec in the subscribe
invocation and the associated command cycle is
activated.

4
 Verify that the correct CCReports are being received at

the notification URI per the boundary condition
specified in the CCSpec.

5a. Undefine the CCSpec defined in Step 1b. The CCSpec is undefined.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 116 of 150

5b. Invoke an undefineRNG method to
� ndefined the RNG defined in step 1.

The RNG is undefined.

 608

610
15.14 TCR-W14 – Memory Banks, Writing API 609

Memory Banks, Writing API
TPId: TCR-W14

Requirement Purpose: This Test Case demonstrates demonstrates writing to all Gen memory banks. Both fix
and the variable fields wo;; be tested. Writing features by writing data to a tag’s user memory bank.
Requirements Tested: GM1, GM26, GM27, GM29, GM33, GM35, GM36, GM37, GM38, GM39, GM40,
GM42, GM43. GM44, GM46, GM47, GM48, GM50, GM50, GM51, GM52, GM54, GM55, GM56, GM57,
GM59, GM60, GM61, GM63, GM65, GM66, GM67, GM68, GM69, GM71, GM72, GM73, GM74, GM75,
GM77, GM78, GM79, GM80, GM81, GM82, GM84, GM85, GM86, GM87, GM88, GM89, GM90, GM91,
GM93, GM94, GM95, GM96, GM97, GM98, GM99, GM100, GM101, GM102, GM103, GM104, GM105,
GM106, GM107, GM108, GM109, GM110, GM111, GM112, WM1, WM6, WM9, WM11, WM12, WM14,
WM17, WM19, WM20, WM21, WM23, WM24, WM25, WM25, WM27, WM28, WM30, WM31, WM32,
WM34, WM35, WM36, WM38, WM39, WM44, WM45, WM46, WM47, WM48, WM49, WM50, WM51,
WM52, WM58

Pre-test conditions:
• A tag with user memory
• CCSpec and corresponding CCOpSpec lists for the test:

Note: Steps 14 through 19 are optional is the implementation does not support variable fields.

CCSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader includeSpecInReports False startTriggerList Null
duration N Sec repeatPeriod M sec stopTriggerList Null
noNewTagsInterval 0 tagsProcessedCount 0 afterError False
reportIfEmpty True statProfileNames Null filterList No

CmdSpec CCOpSpec List A

OpType FieldSpec DataSpec
WRITE @0.32 LITERAL; valid hexadecimal value
WRITE @0.32.32 LITERAL; valid hexadecimal value
WRITE @1.96.32 LITERAL; valid EPC
WRITE @2.32 LITERAL; valid hexadecimal value
WRITE @3.32 LITERAL; valid hexadecimal value

CmdSpec CCOpSpec List B

OpType FieldSpec DataSpec
READ @0.32
READ @0.32.32
READ @1.96.32
READ @2.32
READ @3.32

CmdSpec CCOpSpec List C
OpType FieldSpec DataSpec
WRITE epcBank LITERAL; valid hexadecimal bits value
WRITE tidBank LITERAL; valid hexadecimal bits value
WRITE userBank LITERAL; valid hexadecimal bits value
WRITE killPwd LITERAL; valid hexadecimal value
Write accessPwd LITERAL; valid hexadecimal value

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 117 of 150

CmdSpec CCOpSpec List D
OpType FieldSpec DataSpec
READ epcBank
READ tidBank
READ userBank
READ killPwd
READ accessPwd

CmdSpec CCOpSpec List E

OpType FieldSpec DataSpec
WRITE afi LITERAL; valid hexadecimal value

CmdSpec CCOpSpec List F

OpType FieldSpec DataSpec
READ afi

CmdSpec CCOpSpec List G

OpType FieldSpec DataSpec
WRITE nsi LITERAL; valid hexadecimal value

CmdSpec CCOpSpec List H

OpType FieldSpec DataSpec
READ nsi

CCOpSpec List I
OpType FieldSpec DataSpec
INITIALIZE userBank urn:epcglobal:ale:init:iso15962:x0C
ADD @3.urn:oid:1.0.15961.12.4 CID
ADD @3.urn:oid.1.0.15961.12.5 CIDDFWLAX
ADD @3.urn:oid:1.0.15962.12.6 AA353208AUGDFW
ADD @3.urn:oid:1.0.15962.12.7 DOE,JOHN

CCOpSpec List J

OpType FieldSpec DataSpec
READ @3.urn:oid:1.0.15961.12.4
READ @3.urn:oid.1.0.15961.12.5
READ @3.urn:oid:1.0.15962.12.6
READ @3.urn:oid:1.0.15962.12.7

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 118 of 150

CCOpSpec List K
OpType FieldSpec DataSpec
CHECK userBank urn:epcglobal:ale:check:iso15962
WRITE @3.urn:oid:1.0.15962.12.7 DEER,JOHN

CCOpSpec List L

OpType FieldSpec DataSpec
WRITE @3.urn:oid:1.0.15962.12.7 DEER,JOHN

CCOpSpec List M
OpType FieldSpec DataSpec
DELETE @3.urn:oid:1.0.15962.12.7

CCOpSpec List N

OpType FieldSpec DataSpec
READ @3.urn:oid:1.0.15962.12.7

CmdSpec CCOpSpec List O
OpType FieldSpec DataSpec
WRITE afi LITERAL; valid hexadecimal value

greater than 8 bits in length (> 256)

Step Step description Expected results

1 Place a single Gen 2 tag with epc, user, TID and reserve
memory in the reader’s field. The fields should be cleared.

2

Invoke the immediate method using the CCSpec with
CCOpSpec List A as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.

3

Invoke the immediate method using the CCSpec with
CCOpSpec List B as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully and
contain the content of the reserve, epc, TID
and user memory banks as written in step 2

4 Place a single Gen 2 tag with epc, user, TID and reserve
memory in the reader’s field. The fields should be cleared.

5

Invoke the immediate method using the CCSpec with
CCOpSpec List C as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 119 of 150

6

Invoke the immediate method using the CCSpec with
CCOpSpec List D as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully and
contain the content of the reserve, epc, TID
and user memory banks as written in step 5.
Note: The “operation not possible”
condition could be returned for epcBank,
tidBank and userBank if the ALE
implementation does not support reading to
the end of the memory bank. In this case
no results for these fields will be returned.

7 Place a single Gen 2 tag with epc, user, TID and reserve
memory in the reader’s field.

8

Invoke the immediate method using the CCSpec with
CCOpSpec List E as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.

9

Invoke the immediate method using the CCSpec with
CCOpSpec List F as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully and
contains the afi field written in step 8.

10 Place a single Gen 2 tag with epc, user, TID and reserve
memory in the reader’s field.

11

Invoke the immediate method using the CCSpec with
CCOpSpec List G as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.

12

Invoke the immediate method using the CCSpec with
CCOpSpec List H as specified in the pre-test conditions

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully and
contains the nsi field written in step 1`.

13
(optional) Place a single Gen 2 tag with epc, user, TID and
reserve memory in the reader’s field. The fields should be
cleared

14

(optional) Invoke the immediate method using the CCSpec
with CCOpSpec List I as specified in the pre-test
conditions.

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.
Alternatively, if an implementation does
not support variable fields, an “operation
not possible” condition should be raised.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 120 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 121 of 150

15

(optional) Invoke the immediate method using the CCSpec
with CCOpSpec List J as specified in the pre-test
conditions.

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.. The
report should contain the values written in
step 14. Alternatively, if an implementation
does not support variable fields, an
“operation not possible” condition should
be raised.

16

(optional) Invoke the immediate method using the CCSpec
with CCOpSpec List K as specified in the pre-test
conditions.

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.
Alternatively, if an implementation does
not support variable fields, an “operation
not possible” condition should be raised.

17

(optional) Invoke the immediate method using the CCSpec
with CCOpSpec List L as specified in the pre-test
conditions

Use the report resulting from Step-17 to
verify that the data has been correctly re-
written to the tag’s user memory.
Alternatively, if an implementation does
not support variable fields, an “operation
not possible” condition should be raised.

18

(optional) Invoke the immediate method using the CCSpec
with CCOpSpec List M as specified in the pre-test
conditions.

After N seconds, a CCReports that
conforms to the ALE XSD should be
returned indicating that the CCOpSpecs
have been executed successfully.
Alternatively, if an implementation does
not support variable fields, an “operation
not possible” condition should be raised.

19

(optional) Invoke the immediate method using the CCSpec
with CCOpSpec List N as specified in the pre-test
conditions

Use the report resulting from Step-19 to
verify that the data has been correctly
deleted from the tag’s user memory.
Alternatively, if an implementation does
not support variable fields, an “operation
not possible” condition should be raised.

20

Invoke the immediate method using the CCSpec with
CCOpSpec List O as specified in the pre-test conditions

An CCReport should be returned that
contains an “out of range” condition. The
CCReport should have a CCStatus of
“OUT_OF_RANGE_ERROR”

15.15 TCR-W15 – Initiation and Termination Conditions for 611
Undefining a CCSpec during Active Poll, Writing API 612
 613

Initiation and Termination Conditions for Undefining an Active Poll, Reading API
TPId: TCR-W15

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 122 of 150

Requirement Purpose: This Test Case Requirement verifies that the initiation and termination conditions are
properly filled when an active CCSpec, as a result of a Poll call, is undefined.
Requirements Tested: GM1, GM17, WM1, WM14, WM17, WM19, WM21
Pre-test conditions:

• A valid CCSpec has been defined with repeatPeriod = 0 sec, duration = N sec.

Step Step description Expected results

1 Invoke the poll method using the CCSpec
defined in pre-test condition.

Poll call is outstanding.

2 Wait for N/2 seconds -

3

Invoke � ndefined method to � ndefined the
CCSpec defined in step 1.

Verify that an CCReports is received right after the
� ndefined call with InitiationCondition =
REQUESTED and TerminationCondition =
UNDEFINE.

 614

15.16 – XML Vendor Extension Validaion 615
XML Vendor Extension Validation

TPId: TCR-W16
Requirement Purpose: This Test Case confirms that vendor extensions to the CCSpec, CCReports,
EPCCacheSpec, AssociationTableSpec and RNGSpec have been added in accordance with the rules set forth in
the ALE 1.1 specification. This TCR is opational. This TCR only needs to be executed for implementation
that have vendor extension.
Requirements Tested: XM1, XM2, XM3, XM4, XM5, XM6, XM8, XM9, XM12
Pre-test conditions:

• The vendor has submitted XML files containing instances of CCSpecs, CCReports, EPCCacheSpec,
AssociationTableSpec and RNGSpec that contain the the vendor extensions or the vendor’s XSD for
the Writing API or appropriate documentation confirming the vendor is the owner of the namespace
used for the vendor extensions.

• The vendor has provided its XSD files so they can be inspected to ensure that elements, attributes and
extensions have not be added in places not allowed by the specification.

Step Step description Expected results

1

Examine the XML documents, XSD
documents or other documentation submitted
by the vendor to verify the vendor is the
owning authority for the name space used for
all vendor attribute and element extensions.

Confirm (by design)

2

Validate the XML CCSpec, CCReports,
EPCCacheSpec, AssociationTableSpec and
RNGSpec instance documents received in
TCR-W1 through W15 against the ALE 1.1
Writing API XSD. (See section 13.4)

The XML documents should validate successfully.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 123 of 150

3

Inspect the vendor XSDs to ensure that
elements, attributes and extensions have not
be added in places not allowed by the ALE 1.1
specification.

There are no elements, attributes and extensions added in
the vendor’s XSDs in places not allowed by the ALE 1.1
specificatoin.

 616

617

618

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 124 of 150

16 Tag Memory Specification API 619
 620

622
16.1 TCR-T1 – Get Version, Tag Memory API 621

Get Version, Tag Memory API
TPId: TCR-T1
Test Purpose: This Test Case confirms the proper functions of the methods of the Tag Memory API that return
the ALE standard version and the vendor version for the implementation under test. The return of correct
version numbers also confirms the correct implementation is being tested.
Requirements Tested : GM1, GM2, GM3, GM4, GM5, TM2
Pre-test conditions:

• None
Step Step description Expected results

1
Invoke the getStandardVersion method of
Tag Memory API

• Confirm the string “1.1” is returned.
• Confirm the result returned by this method only

pertain to the API to the Tag Memory API

2

Invoke the getVendorVersion method of the
Tag Memory API

• Confirm that either an empty string or a string
conforming to a proper URI is returned.

• Confirm the vendor is the owning authority of the
URI if the returned string is not empty (by Design)

• Confirm the result returned by this method only
pertain to the API to the Tag Memory API.

 623

625
16.2 TCR-T2 – Defining, Un-defining, Retrieving TMSpecs, Tag 624

Memory API
Defining, Un-defining, Retrieving TMSpecs, Tag Memory API

TPId: TCR-T2
Test Purpose: This Test Case confirms that a valid Tag Memory Spec can be defined and undefined. Further
the defining and un-defining of the Tag Memory Spec can be verified with “ALETM” API methods
getTMSpec and getTMSpecNames.
Requirements Tested : GM1, TM1, TM2, TM5

Pre-test conditions:

• No TMSpec is defined
Step Step description Expected results

1
Invoke the defineTMSpec method with a valid
TMFixedFieldListSpec TMSpec

The ALETM implementation contains the TMSpec
definition supplied in the define method. Steps 2 and 3
confirm the defining of the TMSpec.

2 Verify the TMSpec was defined by invoking
the getTMSpecNames method

Verify that the name returned in the list is that of the
TMSpec just defined

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 125 of 150

3 Invoke getTMSpec using the name of the
defined TMSpec.

Verify that the TMSpec returned is the same as the one
defined

4

Invoke the defineTMSpec method with a valid
TMSpec

The ALETM implementation contains the TMSpec
definition supplied in the define method.

5

Verify the TMSpecs were defined by invoking
the getTMSpecNames method

Verify that the names returned in the list is that of the
TMSpecs just defined

6
Repeat steps 1 to 5 with a valid
TMVariableFieldListSpec TMSpec before
proceeding to step 7

The ALETM implementation contains the TMSpec
definition supplied in the define method. Steps 2 and 3
confirm the defining of the TMSpec.

7 Invoke undefineTMSpec to remove the
TMSpec that was defined in step 1.

The ALETM implementation should no longer have the
TMSpecs defined.

8 Verify that the TMSpecs in step 1 is undefined
by invoking the getTMSpecNames method.

Verify that the list returned only contain the spec name
defined in step 4

9 Invoke undefineTMSpec to remove the
TMSpecs that was defined in step 4.

The ALETM implementation should no longer have the
TMSpecs defined.

10 Verify that the TMSpec is undefined by
invoking the getTMSpecNames method.

Verify that only the TMVariableFieldListSpec name is
returned.

11 Repeat steps 7 to 10 with for
TMVariableFieldListSpec TMSpec

Verify that the list returned is empty.

 626

16.3 TCR-T3 – Exceptions, Tag Memory API 627
Exceptions, Tag Memory API

TPId: TCR-T3
Test Purpose: This Test Case confirms that ALETM implementation will raise all exceptions as defined in the
ALETM specification.
Requirements Tested : GM1, TM2, TM4, TM7, TM9, TM12

Pre-test conditions:

• No TMSpec is defined.
• Use TMFixedFieldListSpec TMSpecs for the first pass through steps 1 through 11.

Step Step description Expected results

1 Invoke the defineTMSpec method with a valid
TMSpec name = “TM1”.

The ALETM implementation contains the TMSpec
definition supplied in the define method.

2 Invoke the defineTMSpec method with a valid
TMSpec name = “TM1”.

Verify that the ALETM implementation raises a
DuplicateNameException.

3

Invoke the defineTMSpec method with a valid
TMSpec name = “TM2”.field parms are Bank
= -1; length = -3; offset = -1. (This step is
skipped for TMVariableFieldListSpec).

Verify that the ALETM implementation raises a
TMSpecValidationException.

4 Invoke the undefineTMSpec method with
name = “TM2”.

Verify that the ALETM implementation raises a
NoSuchNameException

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 126 of 150

5 Invoke the getTMSpec method with name =
“TM2”.

Verify that the ALETM implementation raises a
NoSuchNameException

6 Invoke undefineTMSpec method with name =
“TM1”

TMSpec will be successfully removed.

7

Invoke the defineTMSpec method with a valid
TMSpec name = “TM3”. Field parms are
Bank = 0; OID=
”urn:epcglobal:1.0.15961.12.11” (This step is
skipped for TMFixedFieldListSpec).

Verify that the ALETM implementation raises a
TMSpecValidationException.

8
Invoke the defineTMSpec method with a valid
TMSpec of specName = “TM1” and
fieldname = “symbol”.

The ALETM implementation contains the TMSpec
definition supplied in the defineTMSpec method.

9
Invoke the defineTMSpec method with a valid
TMSpec of specName = “TM2” and
fieldname = “symbol”.

Verify that the ALETM implementation raises a
TMSpecValidationException.

10

Invoke the defineTMSpec method with a valid
TMSpec of specName = “TM2” and
fieldname = any built-in fieldname in ALE1.1
specification section 6.1.

Verify that the ALETM implementation raises a
TMSpecValidationException.

11
Invoke the defineTMSpec method with a valid
TMSpec of specName = “TM2” and
fieldname = “@symbol”.

Verify that the ALETM implementation raises a
TMSpecValidationException.

12 Repeat steps 1 through 11 with a
TMVariableFieldListSpec

 628

630
16.4 TCR-T4 – Using Fixed Fieldnames defined with Tag Memory 629

API
Using Fieldnames defined with Tag Memory API

TPId: TCR-T4
Test Purpose: This Test Case confirms that a valid fixed fieldname defined with Tag Memory APIs can be
usable in an ECSpec.
Requirements Tested : GM1, TM1, TM2, TM5, TM8

Pre-test conditions:

• No TMSpec is defined.
• A valid ECSpec is defined as shown below:

TMFixedFieldSpec
Parameter Value Parameter Value Parameter Value
fieldname PC bank 1 length 16
offset 16 defaultDatatype uint defaultFormat hex

ECSpec

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M startTrigger omitted
duration N stableSetInterval 0 stopTrigger omitted
Current Yes Additions No Deletions No
includeCount Yes includeEPC No includeTag Yes
reportIfEmpty False reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal Yes groupSpec No
includePatterns No excludePatterns Yes
filterList Yes statProfileNames No

ECFilterListMember

Parameter Value Parameter Value Parameter Value
includeExclude Include fieldspec ECFieldspec patList valid

pattern
list

ECFieldSpec

Parameter Value Parameter Value Parameter Value
Fieldname PC Datatype omitted format omitted

• A Gen2 tagset is kept in the reader field

Step Step description Expected results

1
Invoke the defineTMSpec method with a valid
TMSpec using TMFixedFieldSpec.

The ALETM implementation contains the TMSpec
definition supplied in the define method. Steps 2 and 3
confirm the defining of the TMSpec.

2 Verify the TMSpec was defined by invoking
the getTMSpecNames method.

Verify that the name returned in the list is that of the
TMSpec just defined

3 Invoke the define method of the reading API
to define the ECSpec

The ECSpec as specified in the pre-test conditions is
defined.

4 Invoke the poll method of the reading API to
activate the ECSpec and begin the event cycle.

The event cycle should have started.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 127 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 128 of 150

5
Verify that after time N, when the duration
expires, an ECReports is returned by the poll.

An ECReports that conforms to the ALE XSD should be
returned by the poll in Step 4. It should include those
tags from the tag set that matches the include filter.

6 Invoke � ndefined of the reading API method
to remove ECSpec.

The ALE implementation undefines the ECSPec.

7 Invoke undefineTMSpec to remove the
TMSpec that was defined in step 1.

The ALETM implementation should no longer have the
TMSpecs defined.

8
Invoke define method of the reading API to
define the ECSpec at the ALE
� ndefined� tion.

The ALE implementation raises
ECSpecvalidationException.

 631

633
16.5 TCR-T5 – Using Variable Fieldnames defined with Tag 632

Memory API
Using Fieldnames defined with Tag Memory API

TPId: TCR-T5
Test Purpose: This Test Case confirms that a valid variable fieldname defined with Tag Memory APIs can be
usable in an ECSpec.
Requirements Tested : GM1, TM2, TM6, T10, T11
Note: This test requirement is optional and should not be executed for implementations that only support fixed
fileds. It should be executed for implementation that supports variable fields.

Pre-test conditions:

• No TMSpec is defined.
• A valid ECSpec is defined as shown below:

TMVariableFieldSpec
Parameter Value Parameter Value Parameter Value
fieldname PC bank 1 oid urn:oid:1.0.15961.11.12

ECSpec

Parameter Value Parameter Value Parameter Value
Reader List 1 Reader repeatPeriod M startTrigger omitted
duration N stableSetInterval 0 stopTrigger omitted
Current Yes Additions No Deletions No
includeCount Yes includeEPC No includeTag Yes
reportIfEmpty False reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal Yes groupSpec No
includePatterns No excludePatterns Yes
filterList Yes statProfileNames No

ECFilterListMember

Parameter Value Parameter Value Parameter Value
includeExclude Include fieldspec ECFieldspec patList valid

pattern
list

ECFieldSpec

Parameter Value Parameter Value Parameter Value
Fieldname PC Datatype omitted format omitted

• A Gen2 tagset is kept in the reader field

Step Step description Expected results

1
Invoke the defineTMSpec method with a valid
TMSpec using TMVariableFieldSpec.

The ALETM implementation contains the TMSpec
definition supplied in the define method. Steps 2 and 3
confirm the defining of the TMSpec.

2 Verify the TMSpec was defined by invoking
the getTMSpecNames method.

Verify that the name returned in the list is that of the
TMSpec just defined

3 Invoke the define method of the reading API
to define the ECSpec

The ECSpec as specified in the pre-test conditions is
defined.

4
Invoke the poll method of the reading API to
activate the ECSpec and begin the event
cycle.

The event cycle should have started.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 129 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 130 of 150

5
Verify that after time N, when the duration
expires, an ECReports is returned by the poll.

An ECReports that conforms to the ALE XSD should be
returned by the poll in Step 4. It should include those
tags from the tag set that matches the include filter.

6 Invoke � ndefined method of the reading API
to remove ECSpec.

The ALE implementation undefines the ECSPec.

7 Invoke undefineTMSpec to remove the
TMSpec that was defined in step 1.

The ALETM implementation should no longer have the
TMSpecs defined.

8 Invoke define method of the reading API to
define ECSpec at the ALE � ndefined� tion.

The ALE implementation raises
ECSpecvalidationException.

 634

16.6 TCR-T6 – XML Vendor Extension Validaion 635
XML Vendor Extension Validation

TPId: TCR-T6
Requirement Purpose: This Test Case confirms that vendor extensions to the TMSpec have been added in
accordance with the rules set forth in the ALE 1.1 specification. This TCR is opational. This TCR only needs
to be executed for implementation that have vendor extension.
Requirements Tested: XM1, XM2, XM3, XM4, XM5, XM6, XM8, XM9, XM12
Pre-test conditions:

• The vendor has submitted XML files containing instances of TCSpecs that contain the the vendor
extensions or the vendor’s XSD for the Tag Memory API or appropriate documentation confirming the
vendor is the owner of the namespace used for the vendor extensions.

• The vendor has provided its XSD files so they can be inspected to ensure that elements, attributes and
extensions have not be added in places not allowed by the specification.

Step Step description Expected results

1

Examine the XML documents, XSD
documents or other documentation submitted
by the vendor to verify the vendor is the
owning authority for the name space used for
all vendor attribute and element extensions.

Confirm (by design)

2

Validate the XML TMSpec instance
documents received in TCR-T1 through T5
against the ALE 1.1 Tag Memory API XSD.
(See section 13.4)

The XML documents should validate successfully.

3

Inspect the vendor XSDs to ensure that
elements, attributes and extensions have not
be added in places not allowed by the ALE 1.1
specification.

There are no elements, attributes and extensions added in
the vendor’s XSDs in places not allowed by the ALE 1.1
specificatoin.

 636
637

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 131 of 150

17 Access Control API 638

17.1 TCR-A1 – Get Version, Access Control API 639
 640

Get Version, Access Control API
TPId: TCR-A1
Requirement Purpose: This Test Case confirms the proper functions of the ALE methods of the Access
Control API that return the ALE standard version and the vendor version for the ALE implementation under
test. The return of correct version numbers also confirms the correct implementation is being tested.
Requirements Tested: GM1, GM2, GM3, GM4, GM5, AM1, AM15
Pre-test conditions:

• None
Step Step description Expected results

1
Invoke the getStandardVersion method of the
Access Control API.

• Confirm the string “1.1” is returned.
• Confirm the result returned by this method only

pertain to the API to the Access Control API.

2

Invoke the getVendorVersion method of the
Access Control API.

• Confirm that either an empty string or a string
conforming to a proper URI is returned.

• Confirm the vendor is the owning authority of the
URI if the returned string is not empty (by Design)

• Confirm the result returned by this method only
pertain to the API to the Access Control API.

 641

643
17.2 TCR-A2 – Supported Operations 642

Supported Operations
TPId: TCR-A2
Requirement Purpose: This Test Case confirms the proper function of the getSupportedOperations method
and correct handling of unsupported operations.
Requirements Tested: GM1, AM1, AM15, AM16, AM17, AM18, AM19, AM20, AM21
Pre-test conditions:

• None
Step Step description Expected results

1

Invoke the getSupportedOperations method of
the Access Control API.

• Confirm that at least the getStandardVersion,
getVendorVersion, and getSupportedOperations
are in the unordered list returned

• Confirm the list of methods returns conform to
the rules in Section 11.8

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 132 of 150

2

If an implementation does not support all the
methods, test a subset of the methods not
supported to ensure they raise an
UnsupportedOperationExceptions

An unsupported exception should be raised

3
If the implementation supports an anonymous
client identity, show documentation on how
this is done.

Examine the provided document on anonymous client
identity.

4

Show documentation on how at least one
client establishes permission or out-of-band
mechanism that is used to grant access to
ordinary clients.

Examine the provided document to confirm the existence
of the client or mechanism.

 644

646
647

17.3 TCR-A3 – Using ClientIdentity, Roles and Permissions, 645
Access Control API

Using ClientIdentity, Roles and Permissions, Access Control API

TPId: TCR-A3
Requirement Purpose: This Test Case confirms valid AC Permissions used by other ALE implementations.
Requirements Tested: GM1, AM1, AM2, AM4, AM6, AM10, AM11, AM12, AM13, AM14, AM15, RM3, WM4,
TM3, LM8
NOTE: Certain combinations of permission- and role-related methods may raise UnsupportedOperationException
instead of performing the expected function.

Pre-test conditions:
• Only the minimum number of ACPermission, ACRole and ACClientIdentity needed by the implementation

to access the system can be defined.
• The implementation requires to support ALECC interface. If not, replace ALECC.subscribe in

ACPermission3 instances to other suitable supported methods.

NOTE 1: The result for invoking any method except getStandardVersion, getVendorVersion, and
getSupportedOperations can not be an UnsupportedOperationException. The methods that should raise an
UnsupportedOperation exception are those that don’t appear in the list of supported operation returned by the
getSupportedOperations methods in TCR-T2 step 1.
NOTE 2: Those step that list a specific ALE API name should only be executed if the implementation has
implemented the named API.

ACClass

METHOD

ACPermission1 ACPermission2 ACPermission3
Parameter Value Parameter Value Parameter Value
permissionClass ACClass permissionClass ACClass permissionClass ACClass
instances ALE instances * instances ALECC.subscribe

ACClientIdentity1 ACClientIdentity2
Parameter Value Parameter Value
credentials List of

ACClientCredentials
<Implementation
Specific>

credentials List of
ACClientCredentials
<Implementation
Specific>

roleNames role1 roleNames role2
ACRole1 ACRole2

Parameter Value Parameter Value
permissionNames perm1 permissionNames perm2

ACPermission4 ACPermission5 ACPermission6
Parameter Value Parameter Value Parameter Value
permissionClass ACClass permissionClass ACClass permissionClass ACClass
instances ALE.subscribe instances ALELR.update instances ALETM.defineTMSpec

Step Step description Expected results

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 133 of 150

1
Invoke the definePermission method to define
ACPermission1 (defined in pre-test condition) with
permName = “perm1”.

The permission is defined.

2 Invoke getPermissionNames method. Verify that the list returned includes only “perm1”.

3 Invoke getPermission method with the permName
“perm1”.

Verify that ACPermission1 is returned.

4
Invoke defineRole method to define ACRole1
(defined in pre-test condition)with roleName =
“role1”.

The role is defined.

5 Invoke getRoleNames method. Verify that the list returned includes only “role1”.
6 Invoke getRole method with the roleName “role1”. Verify that ACRole1 is returned.

7 Invoke the updatePermission method with
permName “perm1” and ACPermission2.

The permission is updated.

8 Invoke getPermission method with the permName
“perm1”.

Verify that ACPermission2 is returned.

9
Invoke the definePermission method to define
ACPermission3 (defined in pre-test condition) with
permName = “perm2”.

The permission is defined.

10 Invoke the addPermissions method with roleName
= “role1” and permissionNames = “perm2”.

The permission is added to “role1”.

11 Invoke getRole method with the roleName “role1”. Verify that ACRole1 returned contains “perm1” and
“perm2”.

12
Invoke the removePermissions method with
roleName = “role1” and permissionNames =
“perm2”.

The permission is removed from “role1”.

13 Invoke getRole method with the roleName “role1”. Verify that ACRole1 returned contains “perm1”.

14
Invoke defineRole method to define ACRole2
(defined in pre-test condition)with roleName =
“role2”.

The role is defined.

15 Invoke getRoleNames method. Verify that the list returned includes “role1” and
“role2”.

16
Invoke the defineClientIdentity method with
identityName “Client1” and ACClientIdentity1
defined in pre-test condition.

The ClientIndentity is defined.

17 Invoke getClientIdentityNames method. Verify that the list returned includes only “Client1”.

18 Invoke the getClientIdentity method with
identityName “Client1”.

Verify that ACClientIdentity1 is returned.

19 Invoke the getClientPermissionNames with
identityName “Client1”.

Verify that only “perm1” is returned.

20 Invoke the updateRole method with roleName
“role1” and ACRole2.

The role is updated.

21 Invoke getRole method with the roleName “role1”. Verify that ACRole2 is returned.

22 Invoke the getClientPermissionNames with
identityName “Client1”.

Verify that only “perm2” is returned.

23 Invoke the updateRole method with roleName
“role1” and ACRole1.

The role is updated.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 134 of 150

24 Invoke getRole method with the roleName “role1”. Verify that ACRole1 is returned.

25 Invoke the addRoles method with identityName
“Client1” and “role2”.

The role is added to “Client1”.

26 Invoke the getClientPermissionNames with
identityName “Client1”.

Verify that “perm1” and “perm2” are returned.

27 Invoke the getClientIdentity method with
identityName “Client1”.

Verify that returned ACClientIdentity1 contains both
“role1” and “role2”.

28 Invoke the removeRoles method with identityName
“Client1” and “role2”.

The role is removed from “Client1”.

29 Invoke the getClientPermissionNames with
identityName “Client1”.

Verify that only “perm1” is returned.

30 Invoke the getClientIdentity method with
identityName “Client1”.

Verify that returned ACClientIdentity1 contains only
“role1”.

31
(Writing API) “Client1” invokes the define method
of the writing API to define a valid CCSpec on the
ALECC interface.

Verify that the ALECC does not raise any
SecurityException and the CCSpec is defined.

32

Invoke the updateClientIdentity method with
identityName “Client1” and ACClientIdentity2
defined in pre-test condition. (This step is always
invoked regardless of the API being tested.)

ClientIdentity is updated.

33 (Writing API) Invoke the updatePermission method
with permName “perm2” and ACPermission3

The permission is updated.

34 (ALECC only Invoke getPermission method with
the permName “perm2”.

Verify that ACPermission3 is returned.

35 (Writing API) Invoke the getClientIdentity method
with identityName “Client1”.

Verify that ACClientIdentity2 is returned.

36
(Writing API) Client1 invokes the define method of
the writing API to define a valid CCSpec on the
ALECC interface.

Verify that the ALECC implementation raises
SecurityException.

37
(Reading API) Invoke the updatePermission
method with permName “perm2” and
ACPermission2

The permission is updated.

38
(Reading API) “Client1” invokes the define
method of the readingAPI to define a valid ECSpec
on the ALE interface.

Verify that the ALE does not raise any
SecurityException and the ECSpec is defined.

39
(Reading API) Invoke the updatePermission
method with permName “perm2” and
ACPermission4

The permission is updated.

40 (Reading API) Invoke getPermission method with
the permName “perm2”.

Verify that ACPermission4 is returned.

41 (Reading API) Invoke the getClientIdentity method
with identityName “Client1”.

Verify that ACClientIdentity2 is returned.

42
(Reading API) Client1 invokes the define method
of the reading API to define a valid ECSpec on the
ALE interface.

Verify that the ALE implementation raises
SecurityException.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 135 of 150

43 (LR API) Invoke the updatePermission method
with permName “perm2” and ACPermission2

The permission is updated.

44
(LR API) “Client1” invokes the define method of
the logical reader API to define a valid
LogicalReader on the ALECC interface.

Verify that the ALECC does not raise any
SecurityException and the LRSpec is defined.

45 (LR API) Invoke the updatePermission method
with permName “perm2” and ACPermission5

The permission is updated.

46 (LR API) Invoke getPermission method with the
permName “perm2”.

Verify that ACPermission5 is returned.

47 (LR API) Invoke the getClientIdentity method with
identityName “Client1”.

Verify that ACClientIdentity2 is returned.

48
(LR API) Client1 invokes the define method of the
logical API to define a valid LogicalReader on the
ALELR interface.

Verify that the ALELR implementation raises
SecurityException.

49 (TM API) Invoke the updatePermission method
with permName “perm2” and ACPermission2

The permission is updated.

50
(TM API) “Client1” invokes the defineTMSpec
method of the logical reader API to define a valid
TMSpec on the ALECC interface.

Verify that the ALECC does not raise any
SecurityException and the TMSpec is defined.

51 (TM API) Invoke the updatePermission method
with permName “perm2” and ACPermission6

The permission is updated.

52 (TM API) Invoke getPermission method with the
permName “perm2”.

Verify that ACPermission6 is returned.

53 (TM API) Invoke the getClientIdentity method with
identityName “Client1”.

Verify that ACClientIdentity2 is returned.

54
(TM API) Client1 invokes the defineTMSpec
method of the Tag Memory API to define a valid
TMSpec on the ALETM interface.

No Exceptions should be raised.

55 Invoke setRoles using identityName “Client1” and
a roleNames list that only contains “role1”

56 Invoke getClientIdentityNames method. Verify that the list returned includes only “Client1”
showing only “role1” in the roleName list.

57 Invoke undefinePermission to remove the
permission named “perm1”

58 Invoke undefinePermission to remove the
permission named “perm2”

59 Invoke getPermissionNames to verify no
permissions are defined

Verify the getPermissionNames returns an empty list.

60 Invoke undefineRole to remove the role named
“role1”

61 Invoke undefineRole to remove the role named
“role2”

62 Invoke getRoleNames to verify no roles are defined Verify the getRoleNames returns an empty list.

62 Invoke undefineClientIdentity to remove the client
named “Client1”

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 136 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 137 of 150

64 Invoke getClientIdentityNames to verify no roles
are defined

Verify the getClientIdentityNames returns an empty
list.

Post-test Conditions:
• All defined permissions, roles and clientidentitites and CCSpec have been undefined.

 648

650
17.4 TCR-A4 – Exceptions, Access Control API 649

Exceptions, Access Control API
TPId: TCR-A4
Requirement Purpose: This Test Case confirms that the ALE implementation will raise all exceptions as
defined in the ALE specification. This covers exceptions raised due to incorrect parameters passed in ALE
API methods and exceptions raised due to missing or invalid parameters in an ACPermission.
Requirements Tested: GM1, AM1, AM3, AM5, AM7, AM8, AM9
NOTE: Certain combinations of permission- and role-related methods may raise
UnsupportedOperationException instead of performing the expected function.
Pre-test conditions:

• No ACPermission is defined
Note: The ACPermission used in this Test Case Requirement should be valid except for the conditions
specified in step being performed.

Step Step description Expected results

1 Invoke the getPermission with an unknown
perm name.

Verify that the ALEAC implementation raises a
NoSuchPermissionException
.

2 Invoke the updatePermission method using an
unknown name for the permName string.

Verify that the ALEAC implementation raises a
NoSuchPermissionException is raised.

3 Invoke the undefinePermission method with
an unknown ACPermission name

Verify that the ALEAC implementation raises a
NoSuchPermissionException.

4 Invoke the addPermissions method with an
unknown perm name.

Verify that the ALEAC implementation raises a
NoSuchPermissionException / NoSuchRoleException.

5 Invoke the setPermissions method with an
unknown perm name.

Verify that the ALEAC Implementation raises an
NoSuchPermissionException / NoSuchRoleException.

6 Invoke the definePermission method with an
unknown permissionClass name.

Verify that the ALEAC implementation raises a
PermissionValidationException.

7

Invoke the updatePermission method with an
unknown permissionClass name (Note: a
valid ACPermission must be defined before
this step and undefined after this step is
completed.)

Verify that the ALEAC implementation raises a
PermissionValidationException.

8

Invoke the definePermission method with an
invalid instance string for the specified
permission class.

Verify that the ALEAC implementation raises a
PermissionValidationException.

9
Invoke the updatePermission method with an
invalid instance string for the specified
permission class.

Verify that the ALEAC Implementation raises an
PermissionValidationException.

10
Invoke the definePermission method with an
already existing perm name.

Verify that the ALEAC Implementation raises an
DuplicatePermissionException.

11
Invoke the updateRole method using an
unknown name for the roleName string.

Verify that the ALEAC Implementation raises a
NoSuchRoleException.

12 Invoke the getRole with an unknown
roleName.

Verify that the ALEAC Implementation raises a
NoSuchRoleException.

13 Invoke the undefineRole
 with an unknown roleName.

Verify that the ALEAC implementation raises a
NoSuchRoleException.

14
Invoke the addPermissions
Method with an unknown roleName.

Verify that the ALEAC implementation raises a
NoSuchRoleException.

15 Invoke the setPermissions
method with an unknown roleName.

Verify that the ALEAC implementation raises a
NoSuchRoleException.

16 Invoke the removePermissions
method with an unknown roleName.

Verify that the ALEAC implementation raises a
NoSuchRoleException.

17 Invoke the addRoles
method with an unknown roleName.

Verify that the ALEAC implementation raises a
NoSuchRoleException.

18 Invoke the setRoles
method with an unknown roleName.

Verify that the ALEAC implementation raises a
NoSuchRoleException.

19 Invoke the defineRole
method with an invalid ACRole.

Verify that the ALEAC implementation raises a
RoleValidationException.

20 Invoke the updateRole
method with an invalid ACRole.

Verify that the ALEAC implementation raises a
RoleValidationException.

21

Invoke the defineRole
method with an already existing ACRole.
(Note: a valid ACRole must be defined before
this step and undefined after this step is
completed.)

Verify that the ALEAC implementation raises a
DuplicateRoleException.

22 Invoke the updateClientIdentity
method with an unknown ACClientIdentity.

Verify that the ALEAC implementation raises a
NoSuchClientIdentityException.

23 Invoke the getClientIdentity method with an
unknown identityName.

Verify that the ALEAC implementation raises a
NoSuchClientIdentityException.

24 Invoke the getClientPermissionNames method
with an unknown identityName.

Verify that the ALEAC implementation raises a
NoSuchClientIdentityException.

25 Invoke the undefineClientIdentity method
with an unknown identityName.

Verify that the ALEAC implementation raises a
NoSuchClientIdentityException.

26 Invoke the addRoles method with an unknown
identityName.

Verify that the ALEAC implementation raises a
NoSuchClientIdentityException.

27 Invoke the removeRoles method with an
unknown identityName.

Verify that the ALEAC implementation raises a
NoSuchClientIdentityException.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 138 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 139 of 150

28 Invoke the defineClientIdentity method with
an invalid ACClientIdentity.

Verify that the ALEAC implementation raises a
ClientIdentityValidationException.

29

Invoke the updateClientIdentity method with
an invalid ACClientIdentity. (Note: a valid
ACClientIdentity must be defined before this
step and undefined after this step is
completed.)

Verify that the ALEAC implementation raises a
ClientIdentityValidationException.

30 Invoke the defineClientIdentity method with
an already existing ACClientIdentity.

Verify that the ALEAC implementation raises an
DuplicateClientIdentityException.

 651

17.5 TCR-A5 – XML Vendor Extension Validaion 652
XML Vendor Extension Validation

TPId: TCR-A5
Requirement Purpose: This Test Case confirms that vendor extensions to the ACPermission, ACRole and
ACClientIdentity have been added in accordance with the rules set forth in the ALE 1.1 specification. This
TCR is opational. This TCR only needs to be executed for implementation that have vendor extension.
Requirements Tested: XM1, XM2, XM3, XM4, XM5, XM6, XM8, XM9, XM12
Pre-test conditions:

• The vendor has submitted XML files containing instances of ACPermission, ACRole and
ACClientIdentity that contain the the vendor extensions or the vendor’s XSD for the Access Control
API or appropriate documentation confirming the vendor is the owner of the namespace used for the
vendor extensions.

• The vendor has provided its XSD files so they can be inspected to ensure that elements, attributes and
extensions have not be added in places not allowed by the specification.

Step Step description Expected results

1

Examine the XML documents, XSD
documents or other documentation submitted
by the vendor to verify the vendor is the
owning authority for the name space used for
all vendor attribute and element extensions.

Confirm (by design)

2

Validate the XML ACPermission, ACRole
and ACClientIdentity instance documents
received in TCR-A1 through A4 against the
ALE 1.1 Access Control API XSD. (See
section 13.4)

The XML documents should validate successfully.

3

Inspect the vendor XSDs to ensure that
elements, attributes and extensions have not
be added in places not allowed by the ALE 1.1
specification.

There are no elements, attributes and extensions added in
the vendor’s XSDs in places not allowed by the ALE 1.1
specificatoin.

 653
654
655

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 140 of 150

18 ALE Logical Reader API 656

18.1 TCR-L1 – Get Version, Logical Reader API 657
 658

Get Version, Logical Reader API
TPId: TCR-L1
Test Purpose: This Test Case confirms the proper functions of the ALE methods of the Logical Reader API
that return the ALE standard version and the vendor version for the ALE implementation under test. The return
of correct version numbers also confirms the correct implementation is being tested.
Requirements Tested : GM1, GM2, GM3, GM4, GM5, LM1, LM10
Pre-test conditions:

• None
Step Step description Expected results

1
Invoke the getStandardVersion method of
Logical Reader API.

• Confirm the string “1.1” is returned.
• Confirm the result returned by this method only

pertain to the API to the Logical Reader API.

2

Invoke the getVendorVersion method of
Logical Reader API.

• Confirm that either an empty string or a string
conforming to a proper URI is returned.

• Confirm the vendor is the owning authority of the
URI if the returned string is not empty (by Design)

• Confirm the result returned by this method only
pertain to the API to the Logical Reader API.

 659

661
18.2 TCR-L2 – Defining, Un-defining, Updating, Retrieving 660

LRSpecs, Logical Reader API
Defining, Un-defining, Updating, Retrieving LRSpecs, Logical Reader API

TPId: TCR-L2
Test Purpose: This Test Case confirms that a valid Logical Reader can be defined, updated and undefined.
Further the defining and un-defining of the Logical Reader can be verified with “ALELR” API methods
getLRSpec and getLogicalReaderNames.
Requirements Tested: GM1, LM1, LM2, LM5, LM10, LM11
Pre-test conditions:

• One or more logical readers (including base readers) are defined.
Step Step description Expected results

1
Invoke the define method with a valid LRSpec
with isComposite = true.

The ALELR implementation contains the LRSpec
definition supplied in the define method. Steps 2 and 3
confirm the defining of the LRSpec.

2

Verify the LRSpec was defined by invoking
the getLogicalReaderNames method

Verify that the name returned in the list is that of the
LRSpec just defined. Also, all base and logical readers
in the pre-test conditions visible to the user should be in
the list.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 141 of 150

3 Invoke getLRSpec using the name of the
defined LRSpec.

Verify that the LRSpec returned is the same as the one
defined

4

Invoke the define method with a valid LRSpec
with isComposite = true

The ALELR implementation contains the LRSpec
definition supplied in the define method.

5

Verify the LRSpecs were defined by invoking
the getLogicalReaderNames method

Verify that the names returned in the list are that of the
LRSpecs defined in step 1 and 4

6 Invoke � ndefined to remove the LRSpec that
was defined in step 1.

The ALELR implementation should no longer have the
LRSpec defined.

7.
Verify that the LRSpec is undefined by
invoking the getLogicalReaderNames method.

Verify that the list returned only contain the spec name
defined in step 4

8.
Invoke the update method with a valid and
different LRSpec to the reader defined in step
4

The ALELR implementation will update the LRSpec
definition of the corresponding reader.

9 Invoke getLRSpec using the name of the
defined LRSpec in step 4

Verify that the LRSpec returned is the same as the one
updated

10 Invoke � ndefined to remove the LRSpec that
was defined in step 4.

The ALELR implementation should no longer have the
LRSpec defined.

11

Verify that the LRSpec is undefined by
invoking the getLogicalReaderNames method.

Verify that the list does not contain the logical reader
that was defined in step 4 and undefined in step 10. The
logical readers defined in the pre-test conditions should
still be returned.

 662

664
18.3 TCR-L3 – Adding, Setting, Removing Readers, Logical 663

Reader API
Adding, Setting, Removing Readers, Logical Reader API

TPId: TCR-L3
Test Purpose: This Test Case confirms that a valid Logical Reader can be added, set and removed.
Requirements Tested: GM1, LM1, LM5, LM10
Pre-test conditions:

• One or more logical readers (including base readers) are defined.
Step Step description Expected results

1 Invoke the define method with a valid LRSpec
with isComposite = true.

The ALELR implementation contains the LRSpec
definition supplied in the define method.

2 Invoke getLRSpec using the name of the
defined LRSpec.

Verify that the LRSpec returned is the same as the one
defined

3 Add a new reader that is not in defined LR
using addReaders

New reader will be added in the LRSpec

4 Invoke getLRSpec using the name of the
defined LRSpec.

Added reader will be seen in the returned LRSpec

5 remove the added reader in step 3 using
removeReaders

Removed reader will not be seen in the returned LRSpec

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 142 of 150

6 Set a new list of readers in the current LRSpec
invoking setReaders method

Reader list in the corresponding LRSpec will be set new
reader list

7 Invoke getLRSpec using the name of the
defined LRSpec.

New reader list will be seen in the returned LRSpec

8 Invoke � ndefined to remove the LRSpec that
was defined in step 1.

The ALELR implementation should no longer have the
LRSpec defined.

 665

667
18.4 TCR-L4 – Tag Smoothing – Setting and Retrieving Relevant 666

Properties of a Reader, Logical Reader API
Tag Smoothing – Setting and Retrieving Relevant Properties of a Reader, Logical Reader API

TPId: TCR-L4
Test Purpose: This Test Case confirms that a valid Logical Reader’s property can be get and set.
Requirements Tested: GM1, LM1, LM3, LM5, LM7, LM9, LM10, LM11, LM14, LM15, LM16, LM17
NOTE: If the ALE 1.1 implementation under test indicates that it does not support Tag Smoothing, it may
raise appropriate ValidationExceptions.
Pre-test conditions:

• One or more logical readers (including base readers) are defined.
• The ALELR implementation shall support “Tag Smoothing” and all of its parameters.
• A valid ECSpec is defined as follows:

ECSpec
Parameter Value Parameter Value Parameter Value
Reader List 1 Reader startTrigger Null
stopTrigger Null startTriggerList Null stopTriggerList Null
duration 5 Sec stableSetInterval 0 repeatPeriod 8 sec
Current Yes Additions No Deletions No
includeCount No includeEPC Yes includeTag No
reportIfEmpty False reportOnlyOnChange False includeSpecInReports False
includeRawHex No includeRawDecimal No groupSpec No
includePatterns No excludePatterns No primaryKeyFields Null
filterList No statProfileNames No

Step Step description Expected results

1 Invoke the define method with a valid
LRSpec, name = “LR1”, isComposite = false.

The ALELR implementation contains the LRSpec
definition supplied in the define method.

2

Invoke the setProperties method using the
following LRProperty values for the logical
reader defined in step 1:-
GlimpsedTimeout = 500 ms;
ObservedTimeThreshold = 3000 ms;
LostTimeout = 2000 ms.

All properties will be set.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 143 of 150

3 Invoke the getPropertyValue method using the
property name GlimpsedTimeout.

Verify that 500 ms value will be returned.

4 Invoke the getPropertyValue method using the
property name ObservedTimeThreshold.

Verify that 3000 ms value will be returned.

5 Invoke the getPropertyValue method using the
property name LostTimeout.

Verify that 2000 ms value will be returned.

6 Invoke the getPropertyValue method using the
property name ObservedCountThreshold.

Verify that ALELR implementation returns an empty
string.

7
Invoke the subscribe method using the
ECSpec defined in pre-test condition and
begin the event cycle.

The subscription is successful.

8
Immediately place a tag in the reader field (for
a period greater than 3500 ms for the tag being
in ‘Observed’ state).

Verify that after 5 seconds an ECReports that conforms
to the ALE XSD should be returned containing the tag
in the reader field.

9

Remove the tag from the reader field
immediately after receciving the ECReports in
step 8 (For the tag being in ‘Unknown’ state at
the beginning of next event cycle).

Verify that after 5 seconds of the beginning of the next
event cycle, no ECReports is received.

10 Invoke the unsubscribe method to unsubscribe
the ECSpec in step 7.

The unsubscription is successful.

11

Invoke the setProperties method using the
following LRProperty value for the logical
reader defined in step 1:-
LostTimeout = 5000 ms.

The property value is reset.

12
Invoke the subscribe method using the
ECSpec defined in pre-test condition and
begin the event cycle.

The subscription is successful.

13
Immediately place a tag in the reader field (for
a period greater than 3500 ms for the tag being
in ‘Observed’ state).

Verify that after 5 seconds an ECReports that conforms
to the ALE XSD should be returned containing the tag
in the reader field.

14

Remove the tag from the reader field
immediately after receciving the ECReports in
step 13 (For the tag being still in ‘Observed’
state at the beginning of next event cycle).

Verify that after 5 seconds an ECReports that conforms
to the ALE XSD should be returned containing the tag
in the reader field.

15 Invoke the unsubscribe method to unsubscribe
the ECSpec in step 12.

The unsubscription is successful.

16a. Undefine the ECSpec. The ECSpec is undefined.

16b. Invoke undefine to remove the LRSpec that
was defined in step 1.

The ALELR implementation should no longer have the
LRSpec defined.

 668

18.5 TCR-L5 – Exceptions, Logical Reader API 669
Exceptions, Logical Reader API

TPId: TCR-L5

Test Purpose: This Test Case confirms that ALELR implementation will raise all exceptions as defined in the
ALELR specification.
Requirements Tested: GM1, LM1, LM4, LM4, LM5, LM6, LM9, LM10, LM12, LM13, LM18
Pre-test conditions:

• One or more Logical Readers (including base readers) are defined
Step Step description Expected results

1 Invoke the define method with a valid LRSpec
isComposite = true and name = “LR1”.

The ALELR implementation contains the LRSpec
definition supplied in the define method.

2 Invoke the define method with a valid LRSpec
isComposite = true and name = “LR1”.

Verify that the ALELR implementation raises a
DuplicateNameException.

3

Invoke the define method with a valid LRSpec
isComposite = false and name = “LR2” and
GlimpsedTimeout = -1,
ObservedTimeThreshold = -1,
ObservedCountThreshold = -1, LostTimeout =
-1

Verify that the ALELR implementation raises a
ValidationException

4 Invoke the update method with a valid
LRSpec and name = “LR3”.

Verify that the ALELR implementation raises a
NoSuchNameException

5 Invoke the update method with an invalid
LRSpec and name = “LR1”.

Verify that the ALELR implementation raises a
ValidationException

6 Invoke the define method with a valid LRSpec
isComposite = true and name = “LR2”.

The ALELR implementation contains the LRSpec
definition supplied in the define method.

7
Define a ECSpec using LR2 as logical reader
duration = 5 sec repeatPeriod = 10 sec
stablesetInterval = 0, reportIfEmpty = false.

The ALELR implementation contains the ECSpec
definition supplied in the define method.

8. Invoke the subscribe method to activate the
ECSpec and begin the event cycle

Subscribe returns void

9 Wait 2 sec.

10
Invoke the update method with a valid
LRSpec and name = “LR2”.

Verify that the ALELR implementation raises an
InUseException or provide documentation for what “as
soon as possible” means and provides documentation.

11. Invoke unsubscribe method. UnSubscribe returns void

12.
Invoke the update method with a valid
LRSpec and name = < externally-defined
reader name>

Verify that the ALELR implementation raises a
ImmutableReaderException

13.
Invoke the update method with a valid
LRSpec which contain “LR1” reader, and
name = “LR1”.

Verify that the ALELR implementation raises a
ReaderLoopException

14.
Repeat step 4 (no LRSpec needed) and steps
8-12 (no LRSpec needed in any step) for
undefine method.

15. Invoke the getLRSpec method with name =
“LR3”.

Verify that the ALELR implementation raises a
NoSuchNameException

16. Invoke the addReaders method with name =
“LR3”.

Verify that the ALELR implementation raises a
NoSuchNameException

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 144 of 150

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 145 of 150

17.
Invoke the addReaders method with name =
“LR1” and the reader list will contain an
unknown reader.

Verify that the ALELR implementation raises a
ValidationException

18.
Repeat steps 8-11 (no LRSpec needed in any
step) for addReaders method.

Verify that the ALELR implementation raises an
InUseException provide documentation for what “as
soon as possible” means and provides documentation.

19.
Invoke the addReaders method with a valid
name = “< externally-defined reader name>

Verify that the ALELR implementation raises a
ImmutableReaderException (or a
NonCompositeReaderException if it is a *base* reader).

20.

Invoke the define method with a valid LRSpec
isComposite = false and name = “LR4”.

The implementation should raise a ValidationException
unless API defined base readers are supported. Then, the
ALELR implementation contains the LRSpec definition
supplied in the define method.

21.

Invoke the addReaders method with name =
“LR4” and the reader list will contain all
known readers.

The implementation should raise a
NoSuchNameException unless API defined base readers
are supported. Then, verify that the ALELR
implementation raises a NonCompositeReaderException

22.
Invoke the addReaders method with a valid
list of known readers which contain “LR1”
reader, and name = “LR1”.

Verify that the ALELR implementation raises a
ReaderLoopException

23.
Repeat steps 16-22 for setReaders method (no
LRSpec needed in any step).

Note: Step 20 should produce a
DuplicateNameException if API-defined base readers
are supported

24.
Repeat steps 16 and 18-21 for removeReaders
method (no LRSpec needed in any step).

Note: Step 20 should produce a
DuplicateNameException if API-defined base readers
are supported.

25. Invoke the setProperties method with valid
LRProperty list and name = “LR3”.

Verify that the ALELR implementation raises a
NoSuchNameException

26. Invoke the setProperties method with invalid
LRProperty list and name = “LR1”.

Verify that the ALELR implementation raises a
ValidationException

27.
Repeat step 8-11 for setProperties method. Verify that the ALELR implementation raises an

InUseException provide documentation for what “as
soon as possible” means and provides documentation.

28. Invoke the setProperties method with name =
contain < externally-defined reader name>.

Verify that the ALELR implementation raises a
ImmutableReaderException

29 Undefine “LR2” Verify that the ALELR implementation raises an
InUseException

30. Undefine the defined ECSpec.

31. Undefine “LR1”, “LR2”, “LR4”. Note: Step 20 should produce a NoSuchNameException
if API-defined base readers are not supported.”

 670

672
18.6 TCR-L6 – Using Composite, Logical Reader API 671

Using Composite, Logical Reader API

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 146 of 150

TPId: TCR-L6
Test Purpose: This Test Case confirms that a composite logical reader can be used by an ECSpec / CCSpec.
Requirements Tested: GM1, LM1, LM12
Pre-test conditions:

• No Logical Reader is defined.

LRSpec
isComposite true
readers <list of valid logical readers>
properties Null

Step Step description Expected results

1
Invoke the define method with LRSpec
defined in pre-test condition and name =
“LR1”.

The ALELR implementation contains the LRSpec
definition supplied in the define method.

2 Invoke getLRSpec using “LR1” as the name
of the logical reader.

Verify that the LRSpec returned is the same as the one
defined in step 1.

3. Invoke a define method with a valid ECSpec
using logicalReader = “LR1”.

Verify that the ALE implementation accepts the ECSpec
definition.

4. Repeat step 3 for a CCSpec.
 673

18.7 TCR-L7 – XML Vendor Extension Validaion 674
XML Vendor Extension Validation

TPId: TCR-L7
Requirement Purpose: This Test Case confirms that vendor extensions to the LRSpec have been added in
accordance with the rules set forth in the ALE 1.1 specification. This TCR is opational. This TCR only needs
to be executed for implementation that have vendor extension.
Requirements Tested: XM1, XM2, XM3, XM4, XM5, XM6, XM8, XM9, XM12
Pre-test conditions:

• The vendor has submitted XML files containing instances of LRSpec that contain the the vendor
extensions or the vendor’s XSD for the Logical Reader API or appropriate documentation confirming
the vendor is the owner of the namespace used for the vendor extensions.

• The vendor has provided its XSD files so they can be inspected to ensure that elements, attributes and
extensions have not be added in places not allowed by the specification.

Step Step description Expected results

1

Examine the XML documents, XSD
documents or other documentation submitted
by the vendor to verify the vendor is the
owning authority for the name space used for
all vendor attribute and element extensions.

Confirm (by design)

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 147 of 150

2

Validate the XML LRSpec instance
documents received in TCR-l1 through L6
against the ALE 1.1 Logical Memory API
XSD. (See section 13.4)

The XML documents should validate successfully.

3

Inspect the vendor XSDs to ensure that
elements, attributes and extensions have not
be added in places not allowed by the ALE 1.1
specification.

There are no elements, attributes and extensions added in
the vendor’s XSDs in places not allowed by the ALE 1.1
specificatoin.

 675
676
677

679
680
681
682
683
684
685
686
687
688
689

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

19 References 678

[ALE1.1 Part1] EPCglobal, "The Application Level Events (ALE) Specification,
Version 1.1 Part I: Core Specification," EPCglobal Proposed Specification V, xx
December 2007.

[ALE1.1 Part2] EPCglobal, "The Application Level Events (ALE) Specification,
Version 1.1 Part II: XML and SOAP Bindings," EPCglobal Proposed Specification, xx
December 2007.

[Unicode] The Unicode Consortium, The Unicode Standard, Version 5.0, Addison-
Wesley, November, 2006, ISBN 0321480910.

20 Acknowledgement of Contributors and of Companies 690
Opt’d-in during the Creation of this Standard (non-
normative)

Disclaimer
Whilst every effort has been made to ensure that this document and the information
contained herein are correct, EPCglobal and any other party involved in the creation of
the document hereby state that the document is provided on an “as is” basis without
warranty, either expressed or implied, including but not limited to any warranty that the
use of the information herein with not infringe any rights, of accuracy or fitness for
purpose, and hereby disclaim any liability, direct or indirect, for damages or loss
relating to the use of the document.

Below is a list of active participants and contributors in the development of the ALE 1.1
specification. This list does not acknowledge those who only monitored the process
without contributing or those who chose not to have their name listed here. An “active
participant” for the purpose of this list is an individual who corresponded using the
Working Group mailing list or who attended one or more face-to-face or teleconference
meetings of the Working Group.

Mark Frey (EPCglobal Inc.), Facilitator
Richard Bach (GlobeRanger), Co-Chair, Conformance Requirements Editor

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 148 of 150

Andreas Kerschbaumer (EB [formerly 7iD]) 710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Soumya Roy Chowdhury (Polaris Networks), Drafted Content
 Ken Traub (Ken Traub Consulting LLC), Co-Chair
 Arun Badami (MET Laboratories)

Bud Biswas (Polaris Networks)
Ted Osinski (MET Laboratories)
Wolfgang Thaller (EB[formerly 7iD])
John Ross (IBM)

 Hemant Sahgal (Iris Software)

The following list enumerates, in alphabetical order by company name, all companies
that signed the EPCglobal IP Policy and the opt-in agreement for the EPCglobal Working
Group that created the ALE 1.1 standard.

7iD Technologies (formerly EOSS GmbH)
Accenture
Acer Cybercenter Service Inc.
ACSIS
Afilias Limited
Allixon Co., Ltd
Altria Group, Inc./Kraft Foods
Alvin Systems
AMCO TEC International Inc.
AMOS Technologies Inc.
Applied Wireless (AWiD)
Auto-ID Labs - Cambridge
Auto-ID Labs - ICU
Auto-ID Labs - Japan
Auto-ID Labs - MIT
BEA Systems
Cheng-Loong Corporation
Cisco
City Univ of Hong Kong
Cognizant Technology Solutions
Convergence Sys Ltd
Dai Nippon Printing (DNP)
Denso Wave Inc
Elektrobit (formerly 7iD)
ECO, Inc.
EPCglobal Inc.
ETRI - Electronics and Telecommunication Research Institute
FEIG Electronics
France Telecom
Fujitsu Ltd
GlobeRanger

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 149 of 150

GS1 Australia EAN 756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

GS1 Germany (CCG)
GS1 Hong Kong
GS1 International
GS1 Japan
GS1 Netherlands (EAN.nl)
GS1 South Korea
GS1 Sweden AB (EAN)
GS1 Taiwan (EAN)
GS1 UK
GS1 US
Hewlett-Packard Co. (HP)
IBM
Impinj
Institute for Information Industry
Intermec
Iris Software
Ken Traub Consulting LLC
Kimberly-Clark
KL-NET
KTNET - Korea Trade Network
Leiner Health Products Inc.
LG CNS
Research Center for Logistics Information Technology (LIT)
Lockheed Martin - Savi Technology Divison
Manhattan Associates
MET Laboratories
MetaBiz
MetaRights, Ltd.
Metro
Microelectronics Technology, Inc.
Mstar Semiconductor
NEC Corporation
Nippon Telegraph & Telephone Corp (NTT)
noFilis Ltd.
Nomura Research Institute
NXP Semiconductors
NYSSA S.R.L.
OatSystems
Oracle Corporation
Panda Logistics Co.Ltd
Pango Networks, Inc.
Polaris Networks
Polaris Networks
Printronix
Psion Teklogix Inc.

Copyright ©2008-2010 EPCglobal®, All Rights Reserved. Page 150 of 150

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

Q.E.D. Systems
Rafcore Systems Inc.
Red Prairie
Regal Scan Tech
RetailTech
Reva Systems
RF-IT Solutions GmbH
RFID Research Center, Chang Jung Christian University
rfXcel Corp
Samsung SDS
Sandlinks
SAP Aktiengesellschaft
Secure RF
Sedna Systems, Ltd.
Shipcom Wireless, Inc.
Sirit Technologies Inc
Sirit Technologies Inc
Supply Insight, Inc.
SupplyScape Corporation
Tagent Corporation
The Boeing Company
ThingMagic, LLC
Tibco Software, Inc
Toppan Printing Co., Ltd
Toray International, Inc.
Tracetracker Inovation AS
TrueDemand Software
Userstar Information System Co. Ltd
Ussen Limited Company
VeriSign
Vue Technology
Wal-Mart Stores, Inc.
Waldemar Winckel GmbH & Co. KG
Warelite Ltd

	1 Introduction
	2 Scope
	3 Program Overview
	4 Terminology
	5 Submission Requirements
	6 ALE 1.1 General Functional Requirements
	6.1 General API Mandatory Requirements Matrix

	7 ALE 1.1 Reading API Functional Requirements
	7.1 Reading API Mandatory Requirements Matrix

	8 ALE 1.1 Writing API Functional Requirements
	8.1 Writing API Mandatory Requirements Matrix

	9 ALE 1.1 Tag Memory API Functional Requirements
	9.1 Tag Memory API Mandatory Requirements Matrix

	10 ALE 1.1 Access Control API Functional Requirements
	10.1 Access Control API Mandatory Requirements Matrix

	11 ALE 1.1 Logical Reader API Functional Requirements
	11.1 Logical Reader API Mandatory Requirements Matrix

	12 Part II: XML and SOAP Binding Requirements
	12.1 XML and SOAP Binding Mandatory Requirements Matrix

	13 Notes on Test Case Requirements
	13.1 Nomenclature
	13.2 General Requirments
	13.3 Pre-Condidtions and Post-Conditions
	13.4 XML Instance Document Validation

	14 Reading API Test Case Requirements
	14.1 TCR-R1 – Get Version, Reading API
	14.2 TCR-R2 – Defining, Un-defining and Retrieving ECSpecs, Reading API
	14.3 TCR-R3 – Exceptions, Reading API
	14.4 TCR-R4 – Subscribe and Unsubscribe, Reading API
	14.5 TCR-R5 – Poll, Reading API
	14.6 TCR-R6 – Immediate and ECStatProfileName, Reading API
	14.7 TCR-R7 – Using startTrigger, startTriggersList, stopTrigger and stopTriggersList, Reading API
	14.8 TCR-R8 – Exclude Filtering, Reading API
	14.9 TCR-R9 – Using whenDataAvailable, Reading API
	14.10 TCR-R10 – Using primaryKeyFields, Reading API
	14.11 TCR-R11 – Interpretation of new in stableSetInterval, Reading API
	14.12 TCR-R12 – Stability of EPC set, Reading API
	14.13 TCR-R13 – includeSpecInReports, Reading API
	14.14 TCR-R14 – stableSetInterval and duration, Reading API
	14.16 TCR-R16 – Include Filter, Groups and Multiple Readers, Reading API
	14.17 TCR-R17 – Include Filtering, Reading API
	14.18 TCR-R18 – Reporting Variable Fields, Reading API
	14.19 TCR-R19 – Initiation and Termination Conditions for Undefining an ECSpec during Active Poll, Reading API
	14.20 TCR-R20 – Realtime Clock Trigger
	14.21 TCR-R21 – XML Vendor Extension Validaion

	15 Writing API
	15.1 TCR-W1 – Get Version, Writing API
	15.2 TCR-W2 – Defining, Un-defining, Retrieving CCSpecs, Writing API
	15.3 TCR-W3 – Exceptions, Writing API
	15.4 TCR-W4 – Subscribe and Unsubscribe for READ Operation, Writing API
	15.5 TCR-W5 – Subscribe and Unsubscribe for WRITE and LOCK operations, Writing API
	15.6 TCR-W6 – Poll, Writing API
	15.7 TCR-W7 – Poll, Writing API
	15.8 TCR-W8 – Immediate, Writing API
	15.9 TCR-W9 – Using startTriggerList and stopTriggerList, Writing API
	15.10 TCR-W10 – Subscribe and Unsubscribe for KILL operation, Wrting API
	15.11 TCR-W11 – Using EPCCache, Writing API
	15.12 TCR-W12 – Using Association Table, Writing API
	15.13 TCR-W13 – Using RNG, Writing API
	15.14 TCR-W14 – Memory Banks, Writing API
	15.15 TCR-W15 – Initiation and Termination Conditions for Undefining a CCSpec during Active Poll, Writing API
	15.16 – XML Vendor Extension Validaion

	16 Tag Memory Specification API
	16.1 TCR-T1 – Get Version, Tag Memory API
	16.2 TCR-T2 – Defining, Un-defining, Retrieving TMSpecs, Tag Memory API
	16.3 TCR-T3 – Exceptions, Tag Memory API
	16.4 TCR-T4 – Using Fixed Fieldnames defined with Tag Memory API
	16.5 TCR-T5 – Using Variable Fieldnames defined with Tag Memory API
	16.6 TCR-T6 – XML Vendor Extension Validaion

	17 Access Control API
	17.1 TCR-A1 – Get Version, Access Control API
	17.2 TCR-A2 – Supported Operations
	17.3 TCR-A3 – Using ClientIdentity, Roles and Permissions, Access Control API
	17.4 TCR-A4 – Exceptions, Access Control API
	17.5 TCR-A5 – XML Vendor Extension Validaion

	18 ALE Logical Reader API
	18.1 TCR-L1 – Get Version, Logical Reader API
	18.2 TCR-L2 – Defining, Un-defining, Updating, Retrieving LRSpecs, Logical Reader API
	18.3 TCR-L3 – Adding, Setting, Removing Readers, Logical Reader API
	18.4 TCR-L4 – Tag Smoothing – Setting and Retrieving Relevant Properties of a Reader, Logical Reader API
	18.5 TCR-L5 – Exceptions, Logical Reader API
	18.6 TCR-L6 – Using Composite, Logical Reader API
	18.7 TCR-L7 – XML Vendor Extension Validaion

	19 References
	20 Acknowledgement of Contributors and of Companies Opt’d-in during the Creation of this Standard (non-normative)

